mirror of
https://github.com/RGBCube/serenity
synced 2025-07-25 17:57:35 +00:00
LibDSP: Generalize & improve FFT
Several related improvements to our Fast Fourier Transform implementation: - FFT now operates on spans, allowing it to use many more container types other than Vector. It's intended anyways that FFT transmutes the input data. - FFT is now constexpr, moving the implementation to the header and removing the cpp file. This means that if we have static collections of samples, we can transform them at compile time. - sample_data.data() weirdness is now gone.
This commit is contained in:
parent
428d4ae337
commit
00dd8f8fbe
4 changed files with 36 additions and 66 deletions
|
@ -26,7 +26,7 @@ void BarsVisualizationWidget::paint_event(GUI::PaintEvent& event)
|
|||
if (m_sample_buffer.is_empty())
|
||||
return;
|
||||
|
||||
LibDSP::fft(m_sample_buffer, false);
|
||||
LibDSP::fft(m_sample_buffer.span(), false);
|
||||
double max = AK::sqrt(m_sample_count * 2.);
|
||||
|
||||
double freq_bin = m_samplerate / (double)m_sample_count;
|
||||
|
|
|
@ -3,7 +3,6 @@ set(SOURCES
|
|||
Track.cpp
|
||||
Effects.cpp
|
||||
Synthesizers.cpp
|
||||
FFT.cpp
|
||||
)
|
||||
|
||||
serenity_lib(LibDSP dsp)
|
||||
|
|
|
@ -1,62 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#include "FFT.h"
|
||||
#include <AK/Complex.h>
|
||||
#include <AK/Math.h>
|
||||
|
||||
namespace LibDSP {
|
||||
|
||||
// This function uses the input vector as output too. therefore, if you wish to
|
||||
// leave it intact, pass a copy to this function
|
||||
//
|
||||
// The sampling frequency must be more than twice the frequency to resolve.
|
||||
// The sample window must be at least large enough to reflect the periodicity
|
||||
// of the smallest frequency to be resolved.
|
||||
//
|
||||
// For example, to resolve a 10 KHz and a 2 Hz sine waves we need at least
|
||||
// a samplerate of 20 KHz and a window of 0.5 seconds
|
||||
//
|
||||
// If invert is true, this function computes the inverse discrete fourier transform.
|
||||
//
|
||||
// The data vector must be a power of 2
|
||||
// Adapted from https://cp-algorithms.com/algebra/fft.html
|
||||
void fft(Vector<Complex<double>>& sample_data, bool invert)
|
||||
{
|
||||
int n = sample_data.size();
|
||||
auto data = sample_data.data();
|
||||
|
||||
for (int i = 1, j = 0; i < n; i++) {
|
||||
int bit = n >> 1;
|
||||
for (; j & bit; bit >>= 1)
|
||||
j ^= bit;
|
||||
j ^= bit;
|
||||
|
||||
if (i < j)
|
||||
swap(data[i], data[j]);
|
||||
}
|
||||
|
||||
for (int len = 2; len <= n; len <<= 1) {
|
||||
double ang = 2 * AK::Pi<double> / len * (invert ? -1 : 1);
|
||||
Complex<double> wlen(AK::cos(ang), AK::sin(ang));
|
||||
for (int i = 0; i < n; i += len) {
|
||||
Complex<double> w = { 1., 0. };
|
||||
for (int j = 0; j < len / 2; j++) {
|
||||
Complex<double> u = data[i + j], v = data[i + j + len / 2] * w;
|
||||
data[i + j] = u + v;
|
||||
data[i + j + len / 2] = u - v;
|
||||
w *= wlen;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (invert) {
|
||||
for (int i = 0; i < n; i++)
|
||||
data[i] /= n;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
|
@ -7,10 +7,43 @@
|
|||
#pragma once
|
||||
|
||||
#include <AK/Complex.h>
|
||||
#include <AK/Vector.h>
|
||||
#include <AK/Math.h>
|
||||
#include <AK/Span.h>
|
||||
|
||||
namespace LibDSP {
|
||||
|
||||
void fft(Vector<Complex<double>>& sample_data, bool invert = false);
|
||||
constexpr void fft(Span<Complex<double>> sample_data, bool invert = false)
|
||||
{
|
||||
int n = sample_data.size();
|
||||
|
||||
for (int i = 1, j = 0; i < n; i++) {
|
||||
int bit = n >> 1;
|
||||
for (; j & bit; bit >>= 1)
|
||||
j ^= bit;
|
||||
j ^= bit;
|
||||
|
||||
if (i < j)
|
||||
swap(sample_data[i], sample_data[j]);
|
||||
}
|
||||
|
||||
for (int len = 2; len <= n; len <<= 1) {
|
||||
double ang = 2 * AK::Pi<double> / len * (invert ? -1 : 1);
|
||||
Complex<double> wlen(AK::cos(ang), AK::sin(ang));
|
||||
for (int i = 0; i < n; i += len) {
|
||||
Complex<double> w = { 1., 0. };
|
||||
for (int j = 0; j < len / 2; j++) {
|
||||
Complex<double> u = sample_data[i + j], v = sample_data[i + j + len / 2] * w;
|
||||
sample_data[i + j] = u + v;
|
||||
sample_data[i + j + len / 2] = u - v;
|
||||
w *= wlen;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (invert) {
|
||||
for (int i = 0; i < n; i++)
|
||||
sample_data[i] /= n;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue