mirror of
https://github.com/RGBCube/serenity
synced 2025-07-27 03:27:34 +00:00
LibCrypto: Add curve X448
This commit is contained in:
parent
c8803afe3e
commit
0df7ad7493
4 changed files with 483 additions and 0 deletions
356
Userland/Libraries/LibCrypto/Curves/X448.cpp
Normal file
356
Userland/Libraries/LibCrypto/Curves/X448.cpp
Normal file
|
@ -0,0 +1,356 @@
|
|||
/*
|
||||
* Copyright (c) 2022, stelar7 <dudedbz@gmail.com>
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#include <AK/ByteReader.h>
|
||||
#include <AK/Endian.h>
|
||||
#include <LibCrypto/Curves/X448.h>
|
||||
|
||||
namespace Crypto::Curves {
|
||||
|
||||
void X448::import_state(u32* state, ReadonlyBytes data)
|
||||
{
|
||||
for (auto i = 0; i < X448::WORDS; i++) {
|
||||
u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i));
|
||||
state[i] = AK::convert_between_host_and_little_endian(value);
|
||||
}
|
||||
}
|
||||
|
||||
ErrorOr<ByteBuffer> X448::export_state(u32* data)
|
||||
{
|
||||
auto buffer = TRY(ByteBuffer::create_uninitialized(X448::BYTES));
|
||||
|
||||
for (auto i = 0; i < X448::WORDS; i++) {
|
||||
u32 value = AK::convert_between_host_and_little_endian(data[i]);
|
||||
ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value);
|
||||
}
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
void X448::select(u32* state, u32* a, u32* b, u32 condition)
|
||||
{
|
||||
// If B < (2^448 - 2^224 + 1) then R = B, else R = A
|
||||
u32 mask = condition - 1;
|
||||
|
||||
for (auto i = 0; i < X448::WORDS; i++) {
|
||||
state[i] = (a[i] & mask) | (b[i] & ~mask);
|
||||
}
|
||||
}
|
||||
|
||||
void X448::set(u32* state, u32 value)
|
||||
{
|
||||
state[0] = value;
|
||||
|
||||
for (auto i = 1; i < X448::WORDS; i++) {
|
||||
state[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void X448::copy(u32* state, u32* value)
|
||||
{
|
||||
for (auto i = 0; i < X448::WORDS; i++) {
|
||||
state[i] = value[i];
|
||||
}
|
||||
}
|
||||
|
||||
void X448::conditional_swap(u32* first, u32* second, u32 condition)
|
||||
{
|
||||
u32 mask = ~condition + 1;
|
||||
for (auto i = 0; i < X448::WORDS; i++) {
|
||||
u32 temp = mask & (first[i] ^ second[i]);
|
||||
first[i] ^= temp;
|
||||
second[i] ^= temp;
|
||||
}
|
||||
}
|
||||
|
||||
void X448::modular_multiply_single(u32* state, u32* first, u32 second)
|
||||
{
|
||||
// Compute R = (A * B) mod p
|
||||
u64 temp = 0;
|
||||
u64 carry = 0;
|
||||
u32 output[X448::WORDS];
|
||||
|
||||
for (auto i = 0; i < X448::WORDS; i++) {
|
||||
temp += (u64)first[i] * second;
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
// Fast modular reduction
|
||||
carry = temp;
|
||||
for (auto i = 0; i < X448::WORDS / 2; i++) {
|
||||
temp += output[i];
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
temp += carry;
|
||||
for (auto i = X448::WORDS / 2; i < X448::WORDS; i++) {
|
||||
temp += output[i];
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
modular_reduce(state, output, (u32)temp);
|
||||
}
|
||||
|
||||
void X448::modular_square(u32* state, u32* value)
|
||||
{
|
||||
// Compute R = (A ^ 2) mod p
|
||||
modular_multiply(state, value, value);
|
||||
}
|
||||
|
||||
void X448::modular_multiply(u32* state, u32* first, u32* second)
|
||||
{
|
||||
// Compute R = (A * B) mod p
|
||||
|
||||
u64 temp = 0;
|
||||
u64 carry = 0;
|
||||
u32 output[X448::WORDS * 2];
|
||||
|
||||
// Comba's method
|
||||
for (auto i = 0; i < X448::WORDS * 2; i++) {
|
||||
if (i < 14) {
|
||||
for (auto j = 0; j <= i; j++) {
|
||||
temp += (u64)first[j] * second[i - j];
|
||||
carry += temp >> 32;
|
||||
temp &= 0xFFFFFFFF;
|
||||
}
|
||||
} else {
|
||||
for (auto j = i - 13; j < X448::WORDS; j++) {
|
||||
temp += (u64)first[j] * second[i - j];
|
||||
carry += temp >> 32;
|
||||
temp &= 0xFFFFFFFF;
|
||||
}
|
||||
}
|
||||
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp = carry & 0xFFFFFFFF;
|
||||
carry >>= 32;
|
||||
}
|
||||
|
||||
// Fast modular reduction (first pass)
|
||||
temp = 0;
|
||||
for (auto i = 0; i < X448::WORDS / 2; i++) {
|
||||
temp += output[i];
|
||||
temp += output[i + 14];
|
||||
temp += output[i + 21];
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
for (auto i = X448::WORDS / 2; i < X448::WORDS; i++) {
|
||||
temp += output[i];
|
||||
temp += output[i + 7];
|
||||
temp += output[i + 14];
|
||||
temp += output[i + 14];
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
// Fast modular reduction (second pass)
|
||||
carry = temp;
|
||||
for (auto i = 0; i < X448::WORDS / 2; i++) {
|
||||
temp += output[i];
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
temp += carry;
|
||||
for (auto i = X448::WORDS / 2; i < X448::WORDS; i++) {
|
||||
temp += output[i];
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
modular_reduce(state, output, (u32)temp);
|
||||
}
|
||||
|
||||
void X448::modular_add(u32* state, u32* first, u32* second)
|
||||
{
|
||||
u64 temp = 0;
|
||||
|
||||
// Compute R = A + B
|
||||
for (auto i = 0; i < X448::WORDS; i++) {
|
||||
temp += first[i];
|
||||
temp += second[i];
|
||||
state[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
modular_reduce(state, state, (u32)temp);
|
||||
}
|
||||
|
||||
void X448::modular_subtract(u32* state, u32* first, u32* second)
|
||||
{
|
||||
i64 temp = -1;
|
||||
|
||||
// Compute R = A + (2^448 - 2^224 - 1) - B
|
||||
for (auto i = 0; i < 7; i++) {
|
||||
temp += first[i];
|
||||
temp -= second[i];
|
||||
state[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
temp -= 1;
|
||||
|
||||
for (auto i = 7; i < 14; i++) {
|
||||
temp += first[i];
|
||||
temp -= second[i];
|
||||
state[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
temp += 1;
|
||||
|
||||
modular_reduce(state, state, (u32)temp);
|
||||
}
|
||||
|
||||
void X448::modular_reduce(u32* state, u32* data, u32 a_high)
|
||||
{
|
||||
u64 temp = 1;
|
||||
u32 other[X448::WORDS];
|
||||
|
||||
// Compute B = A - (2^448 - 2^224 - 1)
|
||||
for (auto i = 0; i < X448::WORDS / 2; i++) {
|
||||
temp += data[i];
|
||||
other[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
temp += 1;
|
||||
|
||||
for (auto i = 7; i < X448::WORDS; i++) {
|
||||
temp += data[i];
|
||||
other[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
auto condition = (a_high + (u32)temp - 1) & 1;
|
||||
select(state, other, data, condition);
|
||||
}
|
||||
|
||||
void X448::to_power_of_2n(u32* state, u32* value, u8 n)
|
||||
{
|
||||
// Compute R = (A ^ (2^n)) mod p
|
||||
modular_square(state, value);
|
||||
for (auto i = 1; i < n; i++) {
|
||||
modular_square(state, state);
|
||||
}
|
||||
}
|
||||
|
||||
void X448::modular_multiply_inverse(u32* state, u32* value)
|
||||
{
|
||||
// Compute R = A^-1 mod p
|
||||
u32 u[X448::WORDS];
|
||||
u32 v[X448::WORDS];
|
||||
|
||||
modular_square(u, value);
|
||||
modular_multiply(u, u, value);
|
||||
modular_square(u, u);
|
||||
modular_multiply(v, u, value);
|
||||
to_power_of_2n(u, v, 3);
|
||||
modular_multiply(v, u, v);
|
||||
to_power_of_2n(u, v, 6);
|
||||
modular_multiply(u, u, v);
|
||||
modular_square(u, u);
|
||||
modular_multiply(v, u, value);
|
||||
to_power_of_2n(u, v, 13);
|
||||
modular_multiply(u, u, v);
|
||||
modular_square(u, u);
|
||||
modular_multiply(v, u, value);
|
||||
to_power_of_2n(u, v, 27);
|
||||
modular_multiply(u, u, v);
|
||||
modular_square(u, u);
|
||||
modular_multiply(v, u, value);
|
||||
to_power_of_2n(u, v, 55);
|
||||
modular_multiply(u, u, v);
|
||||
modular_square(u, u);
|
||||
modular_multiply(v, u, value);
|
||||
to_power_of_2n(u, v, 111);
|
||||
modular_multiply(v, u, v);
|
||||
modular_square(u, v);
|
||||
modular_multiply(u, u, value);
|
||||
to_power_of_2n(u, u, 223);
|
||||
modular_multiply(u, u, v);
|
||||
modular_square(u, u);
|
||||
modular_square(u, u);
|
||||
modular_multiply(state, u, value);
|
||||
}
|
||||
|
||||
// https://datatracker.ietf.org/doc/html/rfc7748#section-5
|
||||
ErrorOr<ByteBuffer> X448::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u)
|
||||
{
|
||||
u32 k[X448::WORDS] {};
|
||||
u32 u[X448::WORDS] {};
|
||||
u32 x1[X448::WORDS] {};
|
||||
u32 x2[X448::WORDS] {};
|
||||
u32 z1[X448::WORDS] {};
|
||||
u32 z2[X448::WORDS] {};
|
||||
u32 t1[X448::WORDS] {};
|
||||
u32 t2[X448::WORDS] {};
|
||||
|
||||
// Copy input to internal state
|
||||
import_state(k, input_k);
|
||||
|
||||
// Set the two least significant bits of the first byte to 0, and the most significant bit of the last byte to 1
|
||||
k[0] &= 0xFFFFFFFC;
|
||||
k[13] |= 0x80000000;
|
||||
|
||||
// Copy coordinate to internal state
|
||||
import_state(u, input_u);
|
||||
|
||||
// Implementations MUST accept non-canonical values and process them as
|
||||
// if they had been reduced modulo the field prime.
|
||||
modular_reduce(u, u, 0);
|
||||
|
||||
set(x1, 1);
|
||||
set(z1, 0);
|
||||
copy(x2, u);
|
||||
set(z2, 1);
|
||||
|
||||
// Montgomery ladder
|
||||
u32 swap = 0;
|
||||
for (auto i = X448::BITS - 1; i >= 0; i--) {
|
||||
u32 b = (k[i / 32] >> (i % 32)) & 1;
|
||||
|
||||
conditional_swap(x1, x2, swap ^ b);
|
||||
conditional_swap(z1, z2, swap ^ b);
|
||||
|
||||
swap = b;
|
||||
|
||||
modular_add(t1, x2, z2);
|
||||
modular_subtract(x2, x2, z2);
|
||||
modular_add(z2, x1, z1);
|
||||
modular_subtract(x1, x1, z1);
|
||||
modular_multiply(t1, t1, x1);
|
||||
modular_multiply(x2, x2, z2);
|
||||
modular_square(z2, z2);
|
||||
modular_square(x1, x1);
|
||||
modular_subtract(t2, z2, x1);
|
||||
modular_multiply_single(z1, t2, A24);
|
||||
modular_add(z1, z1, x1);
|
||||
modular_multiply(z1, z1, t2);
|
||||
modular_multiply(x1, x1, z2);
|
||||
modular_subtract(z2, t1, x2);
|
||||
modular_square(z2, z2);
|
||||
modular_multiply(z2, z2, u);
|
||||
modular_add(x2, x2, t1);
|
||||
modular_square(x2, x2);
|
||||
}
|
||||
|
||||
conditional_swap(x1, x2, swap);
|
||||
conditional_swap(z1, z2, swap);
|
||||
|
||||
// Retrieve affine representation
|
||||
modular_multiply_inverse(u, z1);
|
||||
modular_multiply(u, u, x1);
|
||||
|
||||
// Encode state for export
|
||||
return export_state(u);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue