mirror of
https://github.com/RGBCube/serenity
synced 2025-05-28 12:55:09 +00:00
LibCore: Decouple handling of timers and waiting for events
This introduces a new TimeoutSet class for use in EventLoopImplementationUnix. It is responsible for finding a timer that expires the soonest and for firing expired timers. TimeoutSet expects timeouts to be subclasses of EventLoopTimeout, of which EventLoopTimer is now a subclass, obviously. TimeoutSet stores timeouts in a binary heap, so EventLoopImplementationUnix should handle large amounts of timers a lot better now. TimeoutSet also supports scheduling of timeouts whose fire time is relative to the start of the next event loop iteration (i. e. ones that directly bound polling time). This functionality will reveal its full potential later with the implementation of asynchronous sockets but it is currently used to implement zero-timeout timers that are an analog of Core::deferred_invoke with slightly different semantics.
This commit is contained in:
parent
ba24e86fdd
commit
120d6b2f21
1 changed files with 203 additions and 79 deletions
|
@ -4,6 +4,7 @@
|
|||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#include <AK/BinaryHeap.h>
|
||||
#include <AK/Singleton.h>
|
||||
#include <AK/TemporaryChange.h>
|
||||
#include <AK/Time.h>
|
||||
|
@ -20,9 +21,10 @@
|
|||
|
||||
namespace Core {
|
||||
|
||||
struct ThreadData;
|
||||
|
||||
namespace {
|
||||
struct ThreadData;
|
||||
class TimeoutSet;
|
||||
|
||||
thread_local ThreadData* s_thread_data;
|
||||
|
||||
short notification_type_to_poll_events(NotificationType type)
|
||||
|
@ -39,18 +41,179 @@ bool has_flag(int value, int flag)
|
|||
{
|
||||
return (value & flag) == flag;
|
||||
}
|
||||
}
|
||||
|
||||
struct EventLoopTimer {
|
||||
int timer_id { 0 };
|
||||
class EventLoopTimeout {
|
||||
public:
|
||||
static constexpr ssize_t INVALID_INDEX = NumericLimits<ssize_t>::max();
|
||||
|
||||
EventLoopTimeout() { }
|
||||
virtual ~EventLoopTimeout() = default;
|
||||
|
||||
virtual void fire(TimeoutSet& timeout_set, MonotonicTime time) = 0;
|
||||
|
||||
MonotonicTime fire_time() const { return m_fire_time; }
|
||||
|
||||
void absolutize(Badge<TimeoutSet>, MonotonicTime current_time)
|
||||
{
|
||||
m_fire_time = current_time + m_duration;
|
||||
}
|
||||
|
||||
ssize_t& index(Badge<TimeoutSet>) { return m_index; }
|
||||
void set_index(Badge<TimeoutSet>, ssize_t index) { m_index = index; }
|
||||
|
||||
bool is_scheduled() const { return m_index != INVALID_INDEX; }
|
||||
|
||||
protected:
|
||||
union {
|
||||
Duration m_duration;
|
||||
MonotonicTime m_fire_time;
|
||||
};
|
||||
|
||||
private:
|
||||
ssize_t m_index = INVALID_INDEX;
|
||||
};
|
||||
|
||||
class TimeoutSet {
|
||||
public:
|
||||
TimeoutSet() = default;
|
||||
|
||||
Optional<MonotonicTime> next_timer_expiration()
|
||||
{
|
||||
if (!m_heap.is_empty()) {
|
||||
return m_heap.peek_min()->fire_time();
|
||||
} else {
|
||||
return {};
|
||||
}
|
||||
}
|
||||
|
||||
void absolutize_relative_timeouts(MonotonicTime current_time)
|
||||
{
|
||||
for (auto timeout : m_scheduled_timeouts) {
|
||||
timeout->absolutize({}, current_time);
|
||||
m_heap.insert(timeout);
|
||||
}
|
||||
m_scheduled_timeouts.clear();
|
||||
}
|
||||
|
||||
size_t fire_expired(MonotonicTime current_time)
|
||||
{
|
||||
size_t fired_count = 0;
|
||||
while (!m_heap.is_empty()) {
|
||||
auto& timeout = *m_heap.peek_min();
|
||||
|
||||
if (timeout.fire_time() <= current_time) {
|
||||
++fired_count;
|
||||
m_heap.pop_min();
|
||||
timeout.set_index({}, EventLoopTimeout::INVALID_INDEX);
|
||||
timeout.fire(*this, current_time);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return fired_count;
|
||||
}
|
||||
|
||||
void schedule_relative(EventLoopTimeout* timeout)
|
||||
{
|
||||
timeout->set_index({}, -1 - static_cast<ssize_t>(m_scheduled_timeouts.size()));
|
||||
m_scheduled_timeouts.append(timeout);
|
||||
}
|
||||
|
||||
void schedule_absolute(EventLoopTimeout* timeout)
|
||||
{
|
||||
m_heap.insert(timeout);
|
||||
}
|
||||
|
||||
void unschedule(EventLoopTimeout* timeout)
|
||||
{
|
||||
if (timeout->index({}) < 0) {
|
||||
size_t i = -1 - timeout->index({});
|
||||
size_t j = m_scheduled_timeouts.size() - 1;
|
||||
VERIFY(m_scheduled_timeouts[i] == timeout);
|
||||
swap(m_scheduled_timeouts[i], m_scheduled_timeouts[j]);
|
||||
swap(m_scheduled_timeouts[i]->index({}), m_scheduled_timeouts[j]->index({}));
|
||||
(void)m_scheduled_timeouts.take_last();
|
||||
} else {
|
||||
m_heap.pop(timeout->index({}));
|
||||
}
|
||||
timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
|
||||
}
|
||||
|
||||
void clear()
|
||||
{
|
||||
for (auto* timeout : m_heap.nodes_in_arbitrary_order())
|
||||
timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
|
||||
m_heap.clear();
|
||||
for (auto* timeout : m_scheduled_timeouts)
|
||||
timeout->set_index({}, EventLoopTimeout::INVALID_INDEX);
|
||||
m_scheduled_timeouts.clear();
|
||||
}
|
||||
|
||||
private:
|
||||
IntrusiveBinaryHeap<
|
||||
EventLoopTimeout*,
|
||||
decltype([](EventLoopTimeout* a, EventLoopTimeout* b) {
|
||||
return a->fire_time() < b->fire_time();
|
||||
}),
|
||||
decltype([](EventLoopTimeout* timeout, size_t index) {
|
||||
timeout->set_index({}, static_cast<ssize_t>(index));
|
||||
}),
|
||||
8>
|
||||
m_heap;
|
||||
Vector<EventLoopTimeout*, 8> m_scheduled_timeouts;
|
||||
};
|
||||
|
||||
class EventLoopTimer final : public EventLoopTimeout {
|
||||
public:
|
||||
static constexpr auto delay_tolerance = Duration::from_milliseconds(5);
|
||||
|
||||
EventLoopTimer() = default;
|
||||
|
||||
void reload(MonotonicTime const& now) { m_fire_time = now + interval; }
|
||||
|
||||
virtual void fire(TimeoutSet& timeout_set, MonotonicTime current_time) override
|
||||
{
|
||||
auto strong_owner = owner.strong_ref();
|
||||
|
||||
if (!strong_owner)
|
||||
return;
|
||||
|
||||
if (should_reload) {
|
||||
MonotonicTime next_fire_time = m_fire_time + interval;
|
||||
if (next_fire_time <= current_time) {
|
||||
auto delay = current_time - next_fire_time;
|
||||
if (delay >= delay_tolerance && !interval.is_zero()) {
|
||||
auto iterations = delay.to_milliseconds() / max<i64>(1, interval.to_milliseconds()) + 1;
|
||||
dbgln("Can't keep up! Skipping approximately {} iteration(s) of a reloading timer (delayed by {}ms).", iterations, delay.to_milliseconds());
|
||||
}
|
||||
next_fire_time = current_time + interval;
|
||||
}
|
||||
m_fire_time = next_fire_time;
|
||||
if (next_fire_time != current_time) {
|
||||
timeout_set.schedule_absolute(this);
|
||||
} else {
|
||||
// NOTE: Unfortunately we need to treat timeouts with the zero interval in a
|
||||
// special way. TimeoutSet::schedule_absolute for them will result in an
|
||||
// infinite loop. TimeoutSet::schedule_relative, on the other hand, will do a
|
||||
// correct thing of scheduling them for the next iteration of the loop.
|
||||
m_duration = {};
|
||||
timeout_set.schedule_relative(this);
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: While TimerShouldFireWhenNotVisible::Yes prevents the timer callback from being
|
||||
// called, it doesn't allow event loop to sleep since it needs to constantly check if
|
||||
// is_visible_for_timer_purposes changed. A better solution will be to unregister a
|
||||
// timer and register it back again when needed. This also has an added benefit of
|
||||
// making fire_when_not_visible and is_visible_for_timer_purposes obsolete.
|
||||
if (fire_when_not_visible == TimerShouldFireWhenNotVisible::Yes || strong_owner->is_visible_for_timer_purposes())
|
||||
ThreadEventQueue::current().post_event(*strong_owner, make<TimerEvent>());
|
||||
}
|
||||
|
||||
Duration interval;
|
||||
MonotonicTime fire_time { MonotonicTime::now_coarse() };
|
||||
bool should_reload { false };
|
||||
TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
|
||||
WeakPtr<EventReceiver> owner;
|
||||
|
||||
void reload(MonotonicTime const& now) { fire_time = now + interval; }
|
||||
bool has_expired(MonotonicTime const& now) const { return now > fire_time; }
|
||||
};
|
||||
|
||||
struct ThreadData {
|
||||
|
@ -93,7 +256,7 @@ struct ThreadData {
|
|||
}
|
||||
|
||||
// Each thread has its own timers, notifiers and a wake pipe.
|
||||
HashTable<EventLoopTimer*> timers;
|
||||
TimeoutSet timeouts;
|
||||
|
||||
Vector<pollfd> poll_fds;
|
||||
HashMap<Notifier*, size_t> notifier_by_ptr;
|
||||
|
@ -105,6 +268,7 @@ struct ThreadData {
|
|||
|
||||
pid_t pid { 0 };
|
||||
};
|
||||
}
|
||||
|
||||
EventLoopImplementationUnix::EventLoopImplementationUnix()
|
||||
: m_wake_pipe_fds(&ThreadData::the().wake_pipe_fds)
|
||||
|
@ -166,15 +330,17 @@ void EventLoopManagerUnix::wait_for_events(EventLoopImplementation::PumpMode mod
|
|||
retry:
|
||||
bool has_pending_events = ThreadEventQueue::current().has_pending_events();
|
||||
|
||||
auto time_at_iteration_start = MonotonicTime::now_coarse();
|
||||
thread_data.timeouts.absolutize_relative_timeouts(time_at_iteration_start);
|
||||
|
||||
// Figure out how long to wait at maximum.
|
||||
// This mainly depends on the PumpMode and whether we have pending events, but also the next expiring timer.
|
||||
int timeout = 0;
|
||||
bool should_wait_forever = false;
|
||||
if (mode == EventLoopImplementation::PumpMode::WaitForEvents && !has_pending_events) {
|
||||
auto next_timer_expiration = get_next_timer_expiration();
|
||||
auto next_timer_expiration = thread_data.timeouts.next_timer_expiration();
|
||||
if (next_timer_expiration.has_value()) {
|
||||
auto now = MonotonicTime::now_coarse();
|
||||
auto computed_timeout = next_timer_expiration.value() - now;
|
||||
auto computed_timeout = next_timer_expiration.value() - time_at_iteration_start;
|
||||
if (computed_timeout.is_negative())
|
||||
computed_timeout = Duration::zero();
|
||||
i64 true_timeout = computed_timeout.to_milliseconds();
|
||||
|
@ -187,6 +353,7 @@ retry:
|
|||
try_select_again:
|
||||
// select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
|
||||
ErrorOr<int> error_or_marked_fd_count = System::poll(thread_data.poll_fds, should_wait_forever ? -1 : timeout);
|
||||
auto time_after_poll = MonotonicTime::now_coarse();
|
||||
// Because POSIX, we might spuriously return from select() with EINTR; just select again.
|
||||
if (error_or_marked_fd_count.is_error()) {
|
||||
if (error_or_marked_fd_count.error().code() == EINTR)
|
||||
|
@ -226,52 +393,29 @@ try_select_again:
|
|||
goto retry;
|
||||
}
|
||||
|
||||
// Handle expired timers.
|
||||
if (!thread_data.timers.is_empty()) {
|
||||
auto now = MonotonicTime::now_coarse();
|
||||
if (error_or_marked_fd_count.value() != 0) {
|
||||
// Handle file system notifiers by making them normal events.
|
||||
for (size_t i = 1; i < thread_data.poll_fds.size(); ++i) {
|
||||
auto& revents = thread_data.poll_fds[i].revents;
|
||||
auto& notifier = *thread_data.notifier_by_index[i];
|
||||
|
||||
for (auto& it : thread_data.timers) {
|
||||
auto& timer = *it;
|
||||
if (!timer.has_expired(now))
|
||||
continue;
|
||||
auto owner = timer.owner.strong_ref();
|
||||
if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
|
||||
&& owner && !owner->is_visible_for_timer_purposes()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (owner)
|
||||
ThreadEventQueue::current().post_event(*owner, make<TimerEvent>());
|
||||
if (timer.should_reload) {
|
||||
timer.reload(now);
|
||||
} else {
|
||||
// FIXME: Support removing expired timers that don't want to reload.
|
||||
VERIFY_NOT_REACHED();
|
||||
}
|
||||
NotificationType type = NotificationType::None;
|
||||
if (has_flag(revents, POLLIN))
|
||||
type |= NotificationType::Read;
|
||||
if (has_flag(revents, POLLOUT))
|
||||
type |= NotificationType::Write;
|
||||
if (has_flag(revents, POLLHUP))
|
||||
type |= NotificationType::HangUp;
|
||||
if (has_flag(revents, POLLERR))
|
||||
type |= NotificationType::Error;
|
||||
type &= notifier.type();
|
||||
if (type != NotificationType::None)
|
||||
ThreadEventQueue::current().post_event(notifier, make<NotifierActivationEvent>(notifier.fd(), type));
|
||||
}
|
||||
}
|
||||
|
||||
if (error_or_marked_fd_count.value() == 0)
|
||||
return;
|
||||
|
||||
// Handle file system notifiers by making them normal events.
|
||||
for (size_t i = 1; i < thread_data.poll_fds.size(); ++i) {
|
||||
auto& revents = thread_data.poll_fds[i].revents;
|
||||
auto& notifier = *thread_data.notifier_by_index[i];
|
||||
|
||||
NotificationType type = NotificationType::None;
|
||||
if (has_flag(revents, POLLIN))
|
||||
type |= NotificationType::Read;
|
||||
if (has_flag(revents, POLLOUT))
|
||||
type |= NotificationType::Write;
|
||||
if (has_flag(revents, POLLHUP))
|
||||
type |= NotificationType::HangUp;
|
||||
if (has_flag(revents, POLLERR))
|
||||
type |= NotificationType::Error;
|
||||
type &= notifier.type();
|
||||
if (type != NotificationType::None)
|
||||
ThreadEventQueue::current().post_event(notifier, make<NotifierActivationEvent>(notifier.fd(), type));
|
||||
}
|
||||
// Handle expired timers.
|
||||
thread_data.timeouts.fire_expired(time_after_poll);
|
||||
}
|
||||
|
||||
class SignalHandlers : public RefCounted<SignalHandlers> {
|
||||
|
@ -344,7 +488,7 @@ void EventLoopManagerUnix::dispatch_signal(int signal_number)
|
|||
void EventLoopImplementationUnix::notify_forked_and_in_child()
|
||||
{
|
||||
auto& thread_data = ThreadData::the();
|
||||
thread_data.timers.clear();
|
||||
thread_data.timeouts.clear();
|
||||
thread_data.poll_fds.clear();
|
||||
thread_data.notifier_by_ptr.clear();
|
||||
thread_data.notifier_by_index.clear();
|
||||
|
@ -356,27 +500,6 @@ void EventLoopImplementationUnix::notify_forked_and_in_child()
|
|||
thread_data.pid = getpid();
|
||||
}
|
||||
|
||||
Optional<MonotonicTime> EventLoopManagerUnix::get_next_timer_expiration()
|
||||
{
|
||||
auto now = MonotonicTime::now_coarse();
|
||||
Optional<MonotonicTime> soonest {};
|
||||
for (auto& it : ThreadData::the().timers) {
|
||||
auto& fire_time = it->fire_time;
|
||||
auto owner = it->owner.strong_ref();
|
||||
if (it->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
|
||||
&& owner && !owner->is_visible_for_timer_purposes()) {
|
||||
continue;
|
||||
}
|
||||
// OPTIMIZATION: If we have a timer that needs to fire right away, we can stop looking here.
|
||||
// FIXME: This whole operation could be O(1) with a better data structure.
|
||||
if (fire_time < now)
|
||||
return now;
|
||||
if (!soonest.has_value() || fire_time < soonest.value())
|
||||
soonest = fire_time;
|
||||
}
|
||||
return soonest;
|
||||
}
|
||||
|
||||
SignalHandlers::SignalHandlers(int signal_number, void (*handle_signal)(int))
|
||||
: m_signal_number(signal_number)
|
||||
, m_original_handler(signal(signal_number, handle_signal))
|
||||
|
@ -500,7 +623,7 @@ intptr_t EventLoopManagerUnix::register_timer(EventReceiver& object, int millise
|
|||
timer->reload(MonotonicTime::now_coarse());
|
||||
timer->should_reload = should_reload;
|
||||
timer->fire_when_not_visible = fire_when_not_visible;
|
||||
thread_data.timers.set(timer);
|
||||
thread_data.timeouts.schedule_absolute(timer);
|
||||
return bit_cast<intptr_t>(timer);
|
||||
}
|
||||
|
||||
|
@ -508,7 +631,8 @@ void EventLoopManagerUnix::unregister_timer(intptr_t timer_id)
|
|||
{
|
||||
auto& thread_data = ThreadData::the();
|
||||
auto* timer = bit_cast<EventLoopTimer*>(timer_id);
|
||||
VERIFY(thread_data.timers.remove(timer));
|
||||
if (timer->is_scheduled())
|
||||
thread_data.timeouts.unschedule(timer);
|
||||
delete timer;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue