mirror of
https://github.com/RGBCube/serenity
synced 2025-05-31 10:58:12 +00:00
ChessEngine: Add ChessEngine
This engine is pretty bad, but doesn't let itself get checkmated
This commit is contained in:
parent
fb62eed058
commit
1e57e32a93
10 changed files with 501 additions and 3 deletions
180
Applications/ChessEngine/MCTSTree.cpp
Normal file
180
Applications/ChessEngine/MCTSTree.cpp
Normal file
|
@ -0,0 +1,180 @@
|
|||
/*
|
||||
* Copyright (c) 2020, the SerenityOS developers.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "MCTSTree.h"
|
||||
#include <AK/String.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
MCTSTree::MCTSTree(const Chess::Board& board, double exploration_parameter, MCTSTree* parent)
|
||||
: m_parent(parent)
|
||||
, m_exploration_parameter(exploration_parameter)
|
||||
, m_board(board)
|
||||
{
|
||||
if (m_parent)
|
||||
m_eval_method = m_parent->eval_method();
|
||||
}
|
||||
|
||||
MCTSTree& MCTSTree::select_leaf()
|
||||
{
|
||||
if (!expanded() || m_children.size() == 0)
|
||||
return *this;
|
||||
|
||||
MCTSTree* node = nullptr;
|
||||
double max_uct = -double(INFINITY);
|
||||
for (auto& child : m_children) {
|
||||
double uct = child.uct(m_board.turn());
|
||||
if (uct >= max_uct) {
|
||||
max_uct = uct;
|
||||
node = &child;
|
||||
}
|
||||
}
|
||||
ASSERT(node);
|
||||
return node->select_leaf();
|
||||
}
|
||||
|
||||
MCTSTree& MCTSTree::expand()
|
||||
{
|
||||
ASSERT(!expanded() || m_children.size() == 0);
|
||||
|
||||
if (!m_moves_generated) {
|
||||
m_board.generate_moves([&](Chess::Move move) {
|
||||
Chess::Board clone = m_board;
|
||||
clone.apply_move(move);
|
||||
m_children.append(make<MCTSTree>(clone, m_exploration_parameter, this));
|
||||
return IterationDecision::Continue;
|
||||
});
|
||||
m_moves_generated = true;
|
||||
}
|
||||
|
||||
if (m_children.size() == 0) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
for (auto& child : m_children) {
|
||||
if (child.m_simulations == 0) {
|
||||
return child;
|
||||
}
|
||||
}
|
||||
ASSERT_NOT_REACHED();
|
||||
}
|
||||
|
||||
int MCTSTree::simulate_game() const
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
Chess::Board clone = m_board;
|
||||
while (!clone.game_finished()) {
|
||||
clone.apply_move(clone.random_move());
|
||||
}
|
||||
return clone.game_score();
|
||||
}
|
||||
|
||||
int MCTSTree::heuristic() const
|
||||
{
|
||||
if (m_board.game_finished())
|
||||
return m_board.game_score();
|
||||
|
||||
double winchance = max(min(double(m_board.material_imbalance()) / 6, 1.0), -1.0);
|
||||
|
||||
double random = double(rand()) / RAND_MAX;
|
||||
if (winchance >= random)
|
||||
return 1;
|
||||
if (winchance <= -random)
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void MCTSTree::apply_result(int game_score)
|
||||
{
|
||||
m_simulations++;
|
||||
m_white_points += game_score;
|
||||
|
||||
if (m_parent)
|
||||
m_parent->apply_result(game_score);
|
||||
}
|
||||
|
||||
void MCTSTree::do_round()
|
||||
{
|
||||
auto& node = select_leaf().expand();
|
||||
|
||||
int result;
|
||||
if (m_eval_method == EvalMethod::Simulation) {
|
||||
result = node.simulate_game();
|
||||
} else {
|
||||
result = node.heuristic();
|
||||
}
|
||||
node.apply_result(result);
|
||||
}
|
||||
|
||||
Chess::Move MCTSTree::best_move() const
|
||||
{
|
||||
int score_multiplier = (m_board.turn() == Chess::Colour::White) ? 1 : -1;
|
||||
|
||||
Chess::Move best_move = { { 0, 0 }, { 0, 0 } };
|
||||
double best_score = -double(INFINITY);
|
||||
ASSERT(m_children.size());
|
||||
for (auto& node : m_children) {
|
||||
double node_score = node.expected_value() * score_multiplier;
|
||||
if (node_score >= best_score) {
|
||||
// The best move is the last move made in the child.
|
||||
best_move = node.m_board.moves()[node.m_board.moves().size() - 1];
|
||||
best_score = node_score;
|
||||
}
|
||||
}
|
||||
|
||||
return best_move;
|
||||
}
|
||||
|
||||
double MCTSTree::expected_value() const
|
||||
{
|
||||
if (m_simulations == 0)
|
||||
return 0;
|
||||
|
||||
return double(m_white_points) / m_simulations;
|
||||
}
|
||||
|
||||
double MCTSTree::uct(Chess::Colour colour) const
|
||||
{
|
||||
// UCT: Upper Confidence Bound Applied to Trees.
|
||||
// Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning"
|
||||
|
||||
// Fun fact: Szepesvári was my data structures professor.
|
||||
double expected = expected_value() * ((colour == Chess::Colour::White) ? 1 : -1);
|
||||
return expected + m_exploration_parameter * sqrt(log(m_parent->m_simulations) / m_simulations);
|
||||
}
|
||||
|
||||
bool MCTSTree::expanded() const
|
||||
{
|
||||
if (!m_moves_generated)
|
||||
return false;
|
||||
|
||||
for (auto& child : m_children) {
|
||||
if (child.m_simulations == 0)
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue