1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-25 18:37:35 +00:00

LibJS: Add spec comments to MathObject

This commit is contained in:
Linus Groh 2023-04-14 17:04:00 +02:00
parent f3f78642f4
commit 23d9096541

View file

@ -79,220 +79,42 @@ ThrowCompletionOr<void> MathObject::initialize(Realm& realm)
// 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
{
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
if (number.is_negative_zero())
return Value(0);
if (number.is_negative_infinity())
return js_infinity();
return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
}
// 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
{
double r = (double)get_random<u32>() / (double)UINT32_MAX;
return Value(r);
}
// 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
{
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
return Value(::sqrt(number.as_double()));
}
// 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
{
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
return Value(::floor(number.as_double()));
}
// 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
{
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
auto number_double = number.as_double();
if (number_double < 0 && number_double > -1)
return Value(-0.f);
return Value(::ceil(number.as_double()));
}
// 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
{
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
double integer = ::ceil(value);
if (integer - 0.5 > value)
integer--;
return Value(integer);
}
// 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
{
Vector<Value> coerced;
for (size_t i = 0; i < vm.argument_count(); ++i)
coerced.append(TRY(vm.argument(i).to_number(vm)));
auto highest = js_negative_infinity();
for (auto& number : coerced) {
if (number.is_nan())
return js_nan();
if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
highest = number;
}
return highest;
}
// 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
{
Vector<Value> coerced;
for (size_t i = 0; i < vm.argument_count(); ++i)
coerced.append(TRY(vm.argument(i).to_number(vm)));
auto lowest = js_infinity();
for (auto& number : coerced) {
if (number.is_nan())
return js_nan();
if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
lowest = number;
}
return lowest;
}
// 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
{
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
if (number.as_double() < 0)
return MathObject::ceil(vm);
return MathObject::floor(vm);
}
// 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. If n is +∞𝔽 or n is -∞𝔽, return NaN.
if (number.is_infinity())
return js_nan();
// 4. Return an implementation-approximated Number value representing the result of the sine of (n).
return Value(::sin(number.as_double()));
}
// 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +∞𝔽, or n is -∞𝔽, return NaN.
if (number.is_nan() || number.is_infinity())
return js_nan();
// 3. If n is +0𝔽 or n is -0𝔽, return 1𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return Value(1);
// 4. Return an implementation-approximated Number value representing the result of the cosine of (n).
return Value(::cos(number.as_double()));
}
// 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
{
// Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. If n is +∞𝔽, or n is -∞𝔽, return NaN.
if (number.is_infinity())
return js_nan();
// 4. Return an implementation-approximated Number value representing the result of the tangent of (n).
return Value(::tan(number.as_double()));
}
// 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
{
auto base = TRY(vm.argument(0).to_number(vm));
auto exponent = TRY(vm.argument(1).to_number(vm));
return JS::exp(vm, base, exponent);
}
// 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
{
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, return NaN.
if (number.is_nan())
return js_nan();
return Value(::exp(number.as_double()));
}
// 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
{
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
return Value(::expm1(number.as_double()));
}
// 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
{
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_positive_zero())
return Value(0);
// 3. If n is -0𝔽, return +0𝔽.
if (number.is_negative_zero())
return Value(-0.0);
if (number.as_double() > 0)
return Value(1);
if (number.as_double() < 0)
return Value(-1);
return js_nan();
}
return Value(0);
// 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
{
auto number = TRY(vm.argument(0).to_u32(vm));
if (number == 0)
return Value(32);
return Value(count_leading_zeroes(number));
// 4. If n is -∞𝔽, return +∞𝔽.
if (number.is_negative_infinity())
return js_infinity();
// 5. If n < -0𝔽, return -n.
// 6. Return n.
return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
}
// 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n > 1𝔽, or n < -1𝔽, return NaN.
if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
return js_nan();
// 3. If n is 1𝔽, return +0𝔽.
if (number.as_double() == 1)
return Value(0);
// 4. Return an implementation-approximated Number value representing the result of the inverse cosine of (n).
return Value(::acos(number.as_double()));
}
@ -353,13 +175,22 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
// 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
{
// Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
// 2. If n is one of NaN, +0𝔽, or -0𝔽, return n.
if (number.is_nan() || number.as_double() == 0)
return number;
// 3. If n is +∞𝔽, return an implementation-approximated Number value representing π / 2.
if (number.is_positive_infinity())
return Value(M_PI_2);
// 4. If n is -∞𝔽, return an implementation-approximated Number value representing -π / 2.
if (number.is_negative_infinity())
return Value(-M_PI_2);
// 5. Return an implementation-approximated Number value representing the result of the inverse tangent of (n).
return Value(::atan(number.as_double()));
}
@ -389,34 +220,6 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
return Value(::atanh(number.as_double()));
}
// 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, n is -0𝔽, or n is +∞𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero() || number.is_positive_infinity())
return number;
// 3. If n is -1𝔽, return -∞𝔽.
if (number.as_double() == -1.)
return js_negative_infinity();
// 4. If n < -1𝔽, return NaN.
if (number.as_double() < -1.)
return js_nan();
// 5. Return an implementation-approximated Number value representing the result of the natural logarithm of 1 + (n).
return Value(::log1p(number.as_double()));
}
// 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
{
return Value(::cbrt(TRY(vm.argument(0).to_number(vm)).as_double()));
}
// 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
{
@ -476,48 +279,226 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
return Value(::atan2(y.as_double(), x.as_double()));
}
// 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (!number.is_finite_number() || number.as_double() == 0)
return number;
// 3. Return an implementation-approximated Number value representing the result of the cube root of (n).
return Value(::cbrt(number.as_double()));
}
// 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (!number.is_finite_number() || number.as_double() == 0)
return number;
// 3. If n < -0𝔽 and n > -1𝔽, return -0𝔽.
if (number.as_double() < 0 && number.as_double() > -1)
return Value(-0.f);
// 4. If n is an integral Number, return n.
// 5. Return the smallest (closest to -∞) integral Number value that is not less than n.
return Value(::ceil(number.as_double()));
}
// 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
{
// 1. Let n be ? ToUint32(x).
auto number = TRY(vm.argument(0).to_u32(vm));
// 2. Let p be the number of leading zero bits in the unsigned 32-bit binary representation of n.
// 3. Return 𝔽(p).
return Value(count_leading_zeroes_safe(number));
}
// 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +∞𝔽, or n is -∞𝔽, return NaN.
if (number.is_nan() || number.is_infinity())
return js_nan();
// 3. If n is +0𝔽 or n is -0𝔽, return 1𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return Value(1);
// 4. Return an implementation-approximated Number value representing the result of the cosine of (n).
return Value(::cos(number.as_double()));
}
// 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, return NaN.
if (number.is_nan())
return js_nan();
// 3. If n is +∞𝔽 or n is -∞𝔽, return +∞𝔽.
if (number.is_positive_infinity() || number.is_negative_infinity())
return js_infinity();
// 4. If n is +0𝔽 or n is -0𝔽, return 1𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return Value(1);
// 5. Return an implementation-approximated Number value representing the result of the hyperbolic cosine of (n).
return Value(::cosh(number.as_double()));
}
// 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is either NaN or +∞𝔽, return n.
if (number.is_nan() || number.is_positive_infinity())
return number;
// 3. If n is either +0𝔽 or -0𝔽, return 1𝔽.
if (number.as_double() == 0)
return Value(1);
// 4. If n is -∞𝔽, return +0𝔽.
if (number.is_negative_infinity())
return Value(0);
// 5. Return an implementation-approximated Number value representing the result of the exponential function of (n).
return Value(::exp(number.as_double()));
}
// 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is one of NaN, +0𝔽, -0𝔽, or +∞𝔽, return n.
if (number.is_nan() || number.as_double() == 0 || number.is_positive_infinity())
return number;
// 3. If n is -∞𝔽, return -1𝔽.
if (number.is_negative_infinity())
return Value(-1);
// 4. Return an implementation-approximated Number value representing the result of subtracting 1 from the exponential function of (n).
return Value(::expm1(number.as_double()));
}
// 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (!number.is_finite_number() || number.as_double() == 0)
return number;
// 3. If n < 1𝔽 and n > +0𝔽, return +0𝔽.
// 4. If n is an integral Number, return n.
// 5. Return the greatest (closest to +∞) integral Number value that is not greater than n.
return Value(::floor(number.as_double()));
}
// 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, return NaN.
if (number.is_nan())
return js_nan();
// 3. If n is one of +0𝔽, -0𝔽, +∞𝔽, or -∞𝔽, return n.
if (number.as_double() == 0 || number.is_infinity())
return number;
// 4. Let n32 be the result of converting n to a value in IEEE 754-2019 binary32 format using roundTiesToEven mode.
// 5. Let n64 be the result of converting n32 to a value in IEEE 754-2019 binary64 format.
// 6. Return the ECMAScript Number value corresponding to n64.
return Value((float)number.as_double());
}
// 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
{
// 1. Let coerced be a new empty List.
Vector<Value> coerced;
for (size_t i = 0; i < vm.argument_count(); ++i)
coerced.append(TRY(vm.argument(i).to_number(vm)));
// 2. For each element arg of args, do
for (size_t i = 0; i < vm.argument_count(); ++i) {
// a. Let n be ? ToNumber(arg).
auto number = TRY(vm.argument(i).to_number(vm));
// b. Append n to coerced.
coerced.append(number);
}
// 3. For each element number of coerced, do
for (auto& number : coerced) {
if (number.is_positive_infinity() || number.is_negative_infinity())
// a. If number is either +∞𝔽 or -∞𝔽, return +∞𝔽.
if (number.is_infinity())
return js_infinity();
}
// 4. Let onlyZero be true.
auto only_zero = true;
double sum_of_squares = 0;
// 5. For each element number of coerced, do
for (auto& number : coerced) {
if (number.is_nan() || number.is_positive_infinity())
// a. If number is NaN, return NaN.
// OPTIMIZATION: For infinities, the result will be infinity with the same sign, so we can return early.
if (number.is_nan() || number.is_infinity())
return number;
if (number.is_negative_infinity())
return js_infinity();
if (!number.is_positive_zero() && !number.is_negative_zero())
// b. If number is neither +0𝔽 nor -0𝔽, set onlyZero to false.
if (number.as_double() != 0)
only_zero = false;
sum_of_squares += number.as_double() * number.as_double();
}
// 6. If onlyZero is true, return +0𝔽.
if (only_zero)
return Value(0);
// 7. Return an implementation-approximated Number value representing the square root of the sum of squares of the mathematical values of the elements of coerced.
return Value(::sqrt(sum_of_squares));
}
// 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
{
// 1. Let a be (? ToUint32(x)).
auto a = TRY(vm.argument(0).to_u32(vm));
// 2. Let b be (? ToUint32(y)).
auto b = TRY(vm.argument(1).to_u32(vm));
// 3. Let product be (a × b) modulo 2^32.
// 4. If product ≥ 2^31, return 𝔽(product - 2^32); otherwise return 𝔽(product).
return Value(static_cast<i32>(a * b));
}
@ -547,30 +528,26 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
return Value(::log(number.as_double()));
}
// 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
// 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN or n is +∞𝔽, return n.
if (number.is_nan() || number.is_positive_infinity())
// 2. If n is NaN, n is +0𝔽, n is -0𝔽, or n is +∞𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero() || number.is_positive_infinity())
return number;
// 3. If n is 1𝔽, return +0𝔽.
if (number.as_double() == 1.)
return Value(0);
// 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
// 3. If n is -1𝔽, return -∞𝔽.
if (number.as_double() == -1.)
return js_negative_infinity();
// 5. If n < -0𝔽, return NaN.
if (number.as_double() < -0.)
// 4. If n < -1𝔽, return NaN.
if (number.as_double() < -1.)
return js_nan();
// 6. Return an implementation-approximated Number value representing the result of the base 2 logarithm of (n).
return Value(::log2(number.as_double()));
// 5. Return an implementation-approximated Number value representing the result of the natural logarithm of 1 + (n).
return Value(::log1p(number.as_double()));
}
// 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
@ -599,6 +576,178 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
return Value(::log10(number.as_double()));
}
// 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN or n is +∞𝔽, return n.
if (number.is_nan() || number.is_positive_infinity())
return number;
// 3. If n is 1𝔽, return +0𝔽.
if (number.as_double() == 1.)
return Value(0);
// 4. If n is +0𝔽 or n is -0𝔽, return -∞𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return js_negative_infinity();
// 5. If n < -0𝔽, return NaN.
if (number.as_double() < -0.)
return js_nan();
// 6. Return an implementation-approximated Number value representing the result of the base 2 logarithm of (n).
return Value(::log2(number.as_double()));
}
// 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
{
// 1. Let coerced be a new empty List.
Vector<Value> coerced;
// 2. For each element arg of args, do
for (size_t i = 0; i < vm.argument_count(); ++i) {
// a. Let n be ? ToNumber(arg).
auto number = TRY(vm.argument(i).to_number(vm));
// b. Append n to coerced.
coerced.append(number);
}
// 3. Let highest be -∞𝔽.
auto highest = js_negative_infinity();
// 4. For each element number of coerced, do
for (auto& number : coerced) {
// a. If number is NaN, return NaN.
if (number.is_nan())
return js_nan();
// b. If number is +0𝔽 and highest is -0𝔽, set highest to +0𝔽.
// c. If number > highest, set highest to number.
if ((number.is_positive_zero() && highest.is_negative_zero()) || number.as_double() > highest.as_double())
highest = number;
}
// 5. Return highest.
return highest;
}
// 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
{
// 1. Let coerced be a new empty List.
Vector<Value> coerced;
// 2. For each element arg of args, do
for (size_t i = 0; i < vm.argument_count(); ++i) {
// a. Let n be ? ToNumber(arg).
auto number = TRY(vm.argument(i).to_number(vm));
// b. Append n to coerced.
coerced.append(number);
}
// 3. Let lowest be +∞𝔽.
auto lowest = js_infinity();
// 4. For each element number of coerced, do
for (auto& number : coerced) {
// a. If number is NaN, return NaN.
if (number.is_nan())
return js_nan();
// b. If number is -0𝔽 and lowest is +0𝔽, set lowest to -0𝔽.
// c. If number < lowest, set lowest to number.
if ((number.is_negative_zero() && lowest.is_positive_zero()) || number.as_double() < lowest.as_double())
lowest = number;
}
// 5. Return lowest.
return lowest;
}
// 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
{
// Set base to ? ToNumber(base).
auto base = TRY(vm.argument(0).to_number(vm));
// 2. Set exponent to ? ToNumber(exponent).
auto exponent = TRY(vm.argument(1).to_number(vm));
// 3. Return Number::exponentiate(base, exponent).
return JS::exp(vm, base, exponent);
}
// 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
{
// This function returns a Number value with positive sign, greater than or equal to +0𝔽 but strictly less than 1𝔽,
// chosen randomly or pseudo randomly with approximately uniform distribution over that range, using an
// implementation-defined algorithm or strategy.
double r = (double)get_random<u32>() / (double)UINT32_MAX;
return Value(r);
}
// 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is an integral Number, return n.
if (!number.is_finite_number() || number.as_double() == ::trunc(number.as_double()))
return number;
// 3. If n < 0.5𝔽 and n > +0𝔽, return +0𝔽.
// 4. If n < -0𝔽 and n ≥ -0.5𝔽, return -0𝔽.
// 5. Return the integral Number closest to n, preferring the Number closer to +∞ in the case of a tie.
double integer = ::ceil(number.as_double());
if (integer - 0.5 > number.as_double())
integer--;
return Value(integer);
}
// 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is one of NaN, +0𝔽, or -0𝔽, return n.
if (number.is_nan() || number.as_double() == 0)
return number;
// 3. If n < -0𝔽, return -1𝔽.
if (number.as_double() < 0)
return Value(-1);
// 4. Return 1𝔽.
return Value(1);
}
// 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. If n is +∞𝔽 or n is -∞𝔽, return NaN.
if (number.is_infinity())
return js_nan();
// 4. Return an implementation-approximated Number value representing the result of the sine of (n).
return Value(::sin(number.as_double()));
}
// 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
{
@ -613,26 +762,40 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
return Value(::sinh(number.as_double()));
}
// 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
// 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
{
// 1. Let n be ? ToNumber(x).
// Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, return NaN.
if (number.is_nan())
// 2. If n is one of NaN, +0𝔽, -0𝔽, or +∞𝔽, return n.
if (number.is_nan() || number.as_double() == 0 || number.is_positive_infinity())
return number;
// 3. If n < -0𝔽, return NaN.
if (number.as_double() < 0)
return js_nan();
// 3. If n is +∞𝔽 or n is -∞𝔽, return +∞𝔽.
if (number.is_positive_infinity() || number.is_negative_infinity())
return js_infinity();
// 4. Return an implementation-approximated Number value representing the result of the square root of (n).
return Value(::sqrt(number.as_double()));
}
// 4. If n is +0𝔽 or n is -0𝔽, return 1𝔽.
if (number.is_positive_zero() || number.is_negative_zero())
return Value(1);
// 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
{
// Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 5. Return an implementation-approximated Number value representing the result of the hyperbolic cosine of (n).
return Value(::cosh(number.as_double()));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
// 3. If n is +∞𝔽, or n is -∞𝔽, return NaN.
if (number.is_infinity())
return js_nan();
// 4. Return an implementation-approximated Number value representing the result of the tangent of (n).
return Value(::tan(number.as_double()));
}
// 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
@ -657,4 +820,22 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
return Value(::tanh(number.as_double()));
}
// 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is not finite or n is either +0𝔽 or -0𝔽, return n.
if (number.is_nan() || number.is_infinity() || number.as_double() == 0)
return number;
// 3. If n < 1𝔽 and n > +0𝔽, return +0𝔽.
// 4. If n < -0𝔽 and n > -1𝔽, return -0𝔽.
// 5. Return the integral Number nearest n in the direction of +0𝔽.
return Value(number.as_double() < 0
? ::ceil(number.as_double())
: ::floor(number.as_double()));
}
}