1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-25 15:17:36 +00:00

Kernel: Replace TimerQueue InlinedLinkedList usage with IntrusiveList

Note that there are a few minor differences between the InlineLinekdList
and IntrusiveList API, so this isn't just a pure data structure change.

 - first()/last() instead of head()/tail()

 - There is no need for a for_each(..) implementation, as it already
   exposes the ability to do range based for loops.
This commit is contained in:
Brian Gianforcaro 2021-06-15 02:44:09 -07:00 committed by Andreas Kling
parent b4aaa99968
commit 2b819ff181
2 changed files with 59 additions and 54 deletions

View file

@ -91,24 +91,23 @@ void TimerQueue::add_timer_locked(NonnullRefPtr<Timer> timer)
auto& queue = queue_for_timer(*timer); auto& queue = queue_for_timer(*timer);
if (queue.list.is_empty()) { if (queue.list.is_empty()) {
queue.list.append(&timer.leak_ref()); queue.list.append(timer.leak_ref());
queue.next_timer_due = timer_expiration; queue.next_timer_due = timer_expiration;
} else { } else {
Timer* following_timer = nullptr; Timer* following_timer = nullptr;
queue.list.for_each([&](Timer& t) { for (auto& t : queue.list) {
if (t.m_expires > timer_expiration) { if (t.m_expires > timer_expiration) {
following_timer = &t; following_timer = &t;
return IterationDecision::Break; break;
} }
return IterationDecision::Continue; }
});
if (following_timer) { if (following_timer) {
bool next_timer_needs_update = queue.list.head() == following_timer; bool next_timer_needs_update = queue.list.first() == following_timer;
queue.list.insert_before(following_timer, &timer.leak_ref()); queue.list.insert_before(*following_timer, timer.leak_ref());
if (next_timer_needs_update) if (next_timer_needs_update)
queue.next_timer_due = timer_expiration; queue.next_timer_due = timer_expiration;
} else { } else {
queue.list.append(&timer.leak_ref()); queue.list.append(timer.leak_ref());
} }
} }
} }
@ -129,23 +128,22 @@ bool TimerQueue::cancel_timer(TimerId id)
Queue* timer_queue = nullptr; Queue* timer_queue = nullptr;
ScopedSpinLock lock(g_timerqueue_lock); ScopedSpinLock lock(g_timerqueue_lock);
if (m_timer_queue_monotonic.list.for_each([&](Timer& timer) { for (auto& timer : m_timer_queue_monotonic.list) {
if (timer.m_id == id) { if (timer.m_id == id) {
found_timer = &timer; found_timer = &timer;
timer_queue = &m_timer_queue_monotonic; timer_queue = &m_timer_queue_monotonic;
return IterationDecision::Break; break;
} }
return IterationDecision::Continue; }
})
!= IterationDecision::Break) { if (found_timer == nullptr) {
m_timer_queue_realtime.list.for_each([&](Timer& timer) { for (auto& timer : m_timer_queue_realtime.list) {
if (timer.m_id == id) { if (timer.m_id == id) {
found_timer = &timer; found_timer = &timer;
timer_queue = &m_timer_queue_realtime; timer_queue = &m_timer_queue_realtime;
return IterationDecision::Break; break;
} }
return IterationDecision::Continue; };
});
} }
if (!found_timer) { if (!found_timer) {
@ -153,22 +151,29 @@ bool TimerQueue::cancel_timer(TimerId id)
// be in m_timers_executing. If it is then release the lock // be in m_timers_executing. If it is then release the lock
// briefly to allow it to finish by removing itself // briefly to allow it to finish by removing itself
// NOTE: This can only happen with multiple processors! // NOTE: This can only happen with multiple processors!
while (m_timers_executing.for_each([&](Timer& timer) { while (true) {
if (timer.m_id == id) for (auto& timer : m_timers_executing) {
return IterationDecision::Break; if (timer.m_id == id) {
return IterationDecision::Continue; found_timer = &timer;
}) == IterationDecision::Break) { break;
// NOTE: This isn't the most efficient way to wait, but }
// it should only happen when multiple processors are used. }
// Also, the timers should execute pretty quickly, so it
// should not loop here for very long. But we can't yield. if (found_timer) {
lock.unlock(); // NOTE: This isn't the most efficient way to wait, but
Processor::wait_check(); // it should only happen when multiple processors are used.
lock.lock(); // Also, the timers should execute pretty quickly, so it
// should not loop here for very long. But we can't yield.
lock.unlock();
Processor::wait_check();
lock.lock();
found_timer = nullptr;
} else {
// We were not able to cancel the timer, but at this point
// the handler should have completed if it was running!
return false;
}
} }
// We were not able to cancel the timer, but at this point
// the handler should have completed if it was running!
return false;
} }
VERIFY(found_timer); VERIFY(found_timer);
@ -181,12 +186,12 @@ bool TimerQueue::cancel_timer(Timer& timer)
{ {
auto& timer_queue = queue_for_timer(timer); auto& timer_queue = queue_for_timer(timer);
ScopedSpinLock lock(g_timerqueue_lock); ScopedSpinLock lock(g_timerqueue_lock);
if (!timer_queue.list.contains_slow(&timer)) { if (!timer_queue.list.contains(timer)) {
// The timer may be executing right now, if it is then it should // The timer may be executing right now, if it is then it should
// be in m_timers_executing. If it is then release the lock // be in m_timers_executing. If it is then release the lock
// briefly to allow it to finish by removing itself // briefly to allow it to finish by removing itself
// NOTE: This can only happen with multiple processors! // NOTE: This can only happen with multiple processors!
while (m_timers_executing.contains_slow(&timer)) { while (m_timers_executing.contains(timer)) {
// NOTE: This isn't the most efficient way to wait, but // NOTE: This isn't the most efficient way to wait, but
// it should only happen when multiple processors are used. // it should only happen when multiple processors are used.
// Also, the timers should execute pretty quickly, so it // Also, the timers should execute pretty quickly, so it
@ -207,8 +212,8 @@ bool TimerQueue::cancel_timer(Timer& timer)
void TimerQueue::remove_timer_locked(Queue& queue, Timer& timer) void TimerQueue::remove_timer_locked(Queue& queue, Timer& timer)
{ {
bool was_next_timer = (queue.list.head() == &timer); bool was_next_timer = (queue.list.first() == &timer);
queue.list.remove(&timer); queue.list.remove(timer);
timer.set_queued(false); timer.set_queued(false);
auto now = timer.now(false); auto now = timer.now(false);
if (timer.m_expires > now) if (timer.m_expires > now)
@ -227,15 +232,15 @@ void TimerQueue::fire()
ScopedSpinLock lock(g_timerqueue_lock); ScopedSpinLock lock(g_timerqueue_lock);
auto fire_timers = [&](Queue& queue) { auto fire_timers = [&](Queue& queue) {
auto* timer = queue.list.head(); auto* timer = queue.list.first();
VERIFY(timer); VERIFY(timer);
VERIFY(queue.next_timer_due == timer->m_expires); VERIFY(queue.next_timer_due == timer->m_expires);
while (timer && timer->now(true) > timer->m_expires) { while (timer && timer->now(true) > timer->m_expires) {
queue.list.remove(timer); queue.list.remove(*timer);
timer->set_queued(false); timer->set_queued(false);
m_timers_executing.append(timer); m_timers_executing.append(*timer);
update_next_timer_due(queue); update_next_timer_due(queue);
@ -245,13 +250,13 @@ void TimerQueue::fire()
Processor::current().deferred_call_queue([this, timer]() { Processor::current().deferred_call_queue([this, timer]() {
timer->m_callback(); timer->m_callback();
ScopedSpinLock lock(g_timerqueue_lock); ScopedSpinLock lock(g_timerqueue_lock);
m_timers_executing.remove(timer); m_timers_executing.remove(*timer);
// Drop the reference we added when queueing the timer // Drop the reference we added when queueing the timer
timer->unref(); timer->unref();
}); });
lock.lock(); lock.lock();
timer = queue.list.head(); timer = queue.list.first();
} }
}; };
@ -265,7 +270,7 @@ void TimerQueue::update_next_timer_due(Queue& queue)
{ {
VERIFY(g_timerqueue_lock.is_locked()); VERIFY(g_timerqueue_lock.is_locked());
if (auto* next_timer = queue.list.head()) if (auto* next_timer = queue.list.first())
queue.next_timer_due = next_timer->m_expires; queue.next_timer_due = next_timer->m_expires;
else else
queue.next_timer_due = {}; queue.next_timer_due = {};

View file

@ -7,7 +7,7 @@
#pragma once #pragma once
#include <AK/Function.h> #include <AK/Function.h>
#include <AK/InlineLinkedList.h> #include <AK/IntrusiveList.h>
#include <AK/NonnullRefPtr.h> #include <AK/NonnullRefPtr.h>
#include <AK/OwnPtr.h> #include <AK/OwnPtr.h>
#include <AK/RefCounted.h> #include <AK/RefCounted.h>
@ -18,10 +18,8 @@ namespace Kernel {
TYPEDEF_DISTINCT_ORDERED_ID(u64, TimerId); TYPEDEF_DISTINCT_ORDERED_ID(u64, TimerId);
class Timer : public RefCounted<Timer> class Timer : public RefCounted<Timer> {
, public InlineLinkedListNode<Timer> {
friend class TimerQueue; friend class TimerQueue;
friend class InlineLinkedListNode<Timer>;
public: public:
void setup(clockid_t clock_id, Time expires, Function<void()>&& callback) void setup(clockid_t clock_id, Time expires, Function<void()>&& callback)
@ -45,8 +43,6 @@ private:
Time m_expires; Time m_expires;
Time m_remaining {}; Time m_remaining {};
Function<void()> m_callback; Function<void()> m_callback;
Timer* m_next { nullptr };
Timer* m_prev { nullptr };
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_queued { false }; Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_queued { false };
bool operator<(const Timer& rhs) const bool operator<(const Timer& rhs) const
@ -64,6 +60,10 @@ private:
bool is_queued() const { return m_queued; } bool is_queued() const { return m_queued; }
void set_queued(bool queued) { m_queued = queued; } void set_queued(bool queued) { m_queued = queued; }
Time now(bool) const; Time now(bool) const;
public:
IntrusiveListNode<Timer> m_list_node;
using List = IntrusiveList<Timer, RawPtr<Timer>, &Timer::m_list_node>;
}; };
class TimerQueue { class TimerQueue {
@ -86,7 +86,7 @@ public:
private: private:
struct Queue { struct Queue {
InlineLinkedList<Timer> list; Timer::List list;
Time next_timer_due {}; Time next_timer_due {};
}; };
void remove_timer_locked(Queue&, Timer&); void remove_timer_locked(Queue&, Timer&);
@ -112,7 +112,7 @@ private:
u64 m_ticks_per_second { 0 }; u64 m_ticks_per_second { 0 };
Queue m_timer_queue_monotonic; Queue m_timer_queue_monotonic;
Queue m_timer_queue_realtime; Queue m_timer_queue_realtime;
InlineLinkedList<Timer> m_timers_executing; Timer::List m_timers_executing;
}; };
} }