1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-23 19:05:08 +00:00

Kernel: Make purgeable memory a VMObject level concept (again)

This patch changes the semantics of purgeable memory.

- AnonymousVMObject now has a "purgeable" flag. It can only be set when
  constructing the object. (Previously, all anonymous memory was
  effectively purgeable.)

- AnonymousVMObject now has a "volatile" flag. It covers the entire
  range of physical pages. (Previously, we tracked ranges of volatile
  pages, effectively making it a page-level concept.)

- Non-volatile objects maintain a physical page reservation via the
  committed pages mechanism, to ensure full coverage for page faults.

- When an object is made volatile, it relinquishes any unused committed
  pages immediately. If later made non-volatile again, we then attempt
  to make a new committed pages reservation. If this fails, we return
  ENOMEM to userspace.

mmap() now creates purgeable objects if passed the MAP_PURGEABLE option
together with MAP_ANONYMOUS. anon_create() memory is always purgeable.
This commit is contained in:
Andreas Kling 2021-07-25 01:46:44 +02:00
parent 6bb53d6a80
commit 2d1a651e0a
17 changed files with 189 additions and 1004 deletions

View file

@ -22,16 +22,17 @@ RefPtr<VMObject> AnonymousVMObject::try_clone()
// commit the number of pages that we need to potentially allocate
// so that the parent is still guaranteed to be able to have all
// non-volatile memory available.
size_t need_cow_pages = 0;
size_t new_cow_pages_needed = 0;
// We definitely need to commit non-volatile areas
for_each_nonvolatile_range([&](VolatilePageRange const& nonvolatile_range) {
need_cow_pages += nonvolatile_range.count;
});
if (is_volatile()) {
// NOTE: If this object is currently volatile, we don't own any committed pages.
} else {
new_cow_pages_needed = page_count();
}
dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, need_cow_pages);
dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, new_cow_pages_needed);
if (!MM.commit_user_physical_pages(need_cow_pages))
if (!MM.commit_user_physical_pages(new_cow_pages_needed))
return {};
// Create or replace the committed cow pages. When cloning a previously
@ -40,10 +41,10 @@ RefPtr<VMObject> AnonymousVMObject::try_clone()
// one would keep the one it still has. This ensures that the original
// one and this one, as well as the clone have sufficient resources
// to cow all pages as needed
m_shared_committed_cow_pages = try_create<CommittedCowPages>(need_cow_pages);
m_shared_committed_cow_pages = try_create<CommittedCowPages>(new_cow_pages_needed);
if (!m_shared_committed_cow_pages) {
MM.uncommit_user_physical_pages(need_cow_pages);
MM.uncommit_user_physical_pages(new_cow_pages_needed);
return {};
}
@ -65,6 +66,20 @@ RefPtr<AnonymousVMObject> AnonymousVMObject::try_create_with_size(size_t size, A
return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(size, commit));
}
RefPtr<AnonymousVMObject> AnonymousVMObject::try_create_purgeable_with_size(size_t size, AllocationStrategy commit)
{
if (commit == AllocationStrategy::Reserve || commit == AllocationStrategy::AllocateNow) {
// We need to attempt to commit before actually creating the object
if (!MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))))
return {};
}
auto vmobject = adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(size, commit));
if (!vmobject)
return {};
vmobject->m_purgeable = true;
return vmobject;
}
RefPtr<AnonymousVMObject> AnonymousVMObject::try_create_with_physical_pages(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
{
return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(physical_pages));
@ -81,7 +96,6 @@ RefPtr<AnonymousVMObject> AnonymousVMObject::try_create_for_physical_range(Physi
AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy)
: VMObject(size)
, m_volatile_ranges_cache({ 0, page_count() })
, m_unused_committed_pages(strategy == AllocationStrategy::Reserve ? page_count() : 0)
{
if (strategy == AllocationStrategy::AllocateNow) {
@ -97,7 +111,6 @@ AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy)
AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
: VMObject(size)
, m_volatile_ranges_cache({ 0, page_count() })
{
VERIFY(paddr.page_base() == paddr);
for (size_t i = 0; i < page_count(); ++i)
@ -106,7 +119,6 @@ AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
AnonymousVMObject::AnonymousVMObject(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
: VMObject(physical_pages.size() * PAGE_SIZE)
, m_volatile_ranges_cache({ 0, page_count() })
{
for (size_t i = 0; i < physical_pages.size(); ++i) {
m_physical_pages[i] = physical_pages[i];
@ -115,9 +127,6 @@ AnonymousVMObject::AnonymousVMObject(Span<NonnullRefPtr<PhysicalPage>> physical_
AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other)
: VMObject(other)
, m_volatile_ranges_cache({ 0, page_count() }) // do *not* clone this
, m_volatile_ranges_cache_dirty(true) // do *not* clone this
, m_purgeable_ranges() // do *not* clone this
, m_unused_committed_pages(other.m_unused_committed_pages)
, m_cow_map() // do *not* clone this
, m_shared_committed_cow_pages(other.m_shared_committed_cow_pages) // share the pool
@ -152,217 +161,94 @@ AnonymousVMObject::~AnonymousVMObject()
MM.uncommit_user_physical_pages(m_unused_committed_pages);
}
int AnonymousVMObject::purge()
{
int purged_page_count = 0;
ScopedSpinLock lock(m_lock);
for_each_volatile_range([&](auto const& range) {
int purged_in_range = 0;
auto range_end = range.base + range.count;
for (size_t i = range.base; i < range_end; i++) {
auto& phys_page = m_physical_pages[i];
if (phys_page && !phys_page->is_shared_zero_page()) {
VERIFY(!phys_page->is_lazy_committed_page());
++purged_in_range;
}
phys_page = MM.shared_zero_page();
}
if (purged_in_range > 0) {
purged_page_count += purged_in_range;
set_was_purged(range);
for_each_region([&](auto& region) {
if (auto owner = region.get_owner()) {
// we need to hold a reference the process here (if there is one) as we may not own this region
dmesgln("Purged {} pages from region {} owned by {} at {} - {}",
purged_in_range,
region.name(),
*owner,
region.vaddr_from_page_index(range.base),
region.vaddr_from_page_index(range.base + range.count));
} else {
dmesgln("Purged {} pages from region {} (no ownership) at {} - {}",
purged_in_range,
region.name(),
region.vaddr_from_page_index(range.base),
region.vaddr_from_page_index(range.base + range.count));
}
region.remap_vmobject_page_range(range.base, range.count);
});
}
});
return purged_page_count;
}
void AnonymousVMObject::set_was_purged(VolatilePageRange const& range)
{
VERIFY(m_lock.is_locked());
for (auto* purgeable_ranges : m_purgeable_ranges)
purgeable_ranges->set_was_purged(range);
}
void AnonymousVMObject::register_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
size_t AnonymousVMObject::purge()
{
ScopedSpinLock lock(m_lock);
purgeable_page_ranges.set_vmobject(this);
VERIFY(!m_purgeable_ranges.contains_slow(&purgeable_page_ranges));
m_purgeable_ranges.append(&purgeable_page_ranges);
}
void AnonymousVMObject::unregister_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
{
ScopedSpinLock lock(m_lock);
for (size_t i = 0; i < m_purgeable_ranges.size(); i++) {
if (m_purgeable_ranges[i] != &purgeable_page_ranges)
if (!is_purgeable() || !is_volatile())
return 0;
size_t total_pages_purged = 0;
for (auto& page : m_physical_pages) {
VERIFY(page);
if (page->is_shared_zero_page())
continue;
purgeable_page_ranges.set_vmobject(nullptr);
m_purgeable_ranges.remove(i);
return;
page = MM.shared_zero_page();
++total_pages_purged;
}
VERIFY_NOT_REACHED();
}
bool AnonymousVMObject::is_any_volatile() const
{
ScopedSpinLock lock(m_lock);
for (auto& volatile_ranges : m_purgeable_ranges) {
ScopedSpinLock lock(volatile_ranges->m_volatile_ranges_lock);
if (!volatile_ranges->is_empty())
return true;
}
return false;
}
m_was_purged = true;
size_t AnonymousVMObject::remove_lazy_commit_pages(VolatilePageRange const& range)
{
VERIFY(m_lock.is_locked());
size_t removed_count = 0;
auto range_end = range.base + range.count;
for (size_t i = range.base; i < range_end; i++) {
auto& phys_page = m_physical_pages[i];
if (phys_page && phys_page->is_lazy_committed_page()) {
phys_page = MM.shared_zero_page();
removed_count++;
VERIFY(m_unused_committed_pages > 0);
if (--m_unused_committed_pages == 0)
break;
}
}
return removed_count;
}
void AnonymousVMObject::update_volatile_cache()
{
VERIFY(m_lock.is_locked());
VERIFY(m_volatile_ranges_cache_dirty);
m_volatile_ranges_cache.clear();
for_each_nonvolatile_range([&](VolatilePageRange const& range) {
m_volatile_ranges_cache.add_unchecked(range);
for_each_region([](Region& region) {
region.remap();
});
m_volatile_ranges_cache_dirty = false;
return total_pages_purged;
}
void AnonymousVMObject::range_made_volatile(VolatilePageRange const& range)
KResult AnonymousVMObject::set_volatile(bool is_volatile, bool& was_purged)
{
VERIFY(m_lock.is_locked());
VERIFY(is_purgeable());
if (m_unused_committed_pages == 0)
return;
ScopedSpinLock locker(m_lock);
// We need to check this range for any pages that are marked for
// lazy committed allocation and turn them into shared zero pages
// and also adjust the m_unused_committed_pages for each such page.
// Take into account all the other views as well.
size_t uncommit_page_count = 0;
for_each_volatile_range([&](auto const& r) {
auto intersected = range.intersected(r);
if (!intersected.is_empty()) {
uncommit_page_count += remove_lazy_commit_pages(intersected);
if (m_unused_committed_pages == 0)
return IterationDecision::Break;
was_purged = m_was_purged;
if (m_volatile == is_volatile)
return KSuccess;
if (is_volatile) {
// When a VMObject is made volatile, it gives up all of its committed memory.
// Any physical pages already allocated remain in the VMObject for now, but the kernel is free to take them at any moment.
for (auto& page : m_physical_pages) {
if (page && page->is_lazy_committed_page())
page = MM.shared_zero_page();
}
return IterationDecision::Continue;
});
// Return those committed pages back to the system
if (uncommit_page_count > 0) {
dbgln_if(COMMIT_DEBUG, "Uncommit {} lazy-commit pages from {:p}", uncommit_page_count, this);
MM.uncommit_user_physical_pages(uncommit_page_count);
}
m_volatile_ranges_cache_dirty = true;
}
void AnonymousVMObject::range_made_nonvolatile(VolatilePageRange const&)
{
VERIFY(m_lock.is_locked());
m_volatile_ranges_cache_dirty = true;
}
size_t AnonymousVMObject::count_needed_commit_pages_for_nonvolatile_range(VolatilePageRange const& range)
{
VERIFY(m_lock.is_locked());
VERIFY(!range.is_empty());
size_t need_commit_pages = 0;
auto range_end = range.base + range.count;
for (size_t page_index = range.base; page_index < range_end; page_index++) {
// COW pages are accounted for in m_shared_committed_cow_pages
if (!m_cow_map.is_null() && m_cow_map.get(page_index))
continue;
auto& phys_page = m_physical_pages[page_index];
if (phys_page && phys_page->is_shared_zero_page())
need_commit_pages++;
}
return need_commit_pages;
}
size_t AnonymousVMObject::mark_committed_pages_for_nonvolatile_range(VolatilePageRange const& range, size_t mark_total)
{
VERIFY(m_lock.is_locked());
VERIFY(!range.is_empty());
VERIFY(mark_total > 0);
size_t pages_updated = 0;
auto range_end = range.base + range.count;
for (size_t page_index = range.base; page_index < range_end; page_index++) {
// COW pages are accounted for in m_shared_committed_cow_pages
if (!m_cow_map.is_null() && m_cow_map.get(page_index))
continue;
auto& phys_page = m_physical_pages[page_index];
if (phys_page && phys_page->is_shared_zero_page()) {
phys_page = MM.lazy_committed_page();
if (++pages_updated == mark_total)
break;
if (m_unused_committed_pages) {
MM.uncommit_user_physical_pages(m_unused_committed_pages);
m_unused_committed_pages = 0;
}
m_volatile = true;
m_was_purged = false;
return KSuccess;
}
// When a VMObject is made non-volatile, we try to commit however many pages are not currently available.
// If that fails, we return false to indicate that memory allocation failed.
size_t committed_pages_needed = 0;
for (auto& page : m_physical_pages) {
VERIFY(page);
if (page->is_shared_zero_page())
++committed_pages_needed;
}
dbgln_if(COMMIT_DEBUG, "Added {} lazy-commit pages to {:p}", pages_updated, this);
if (!committed_pages_needed) {
m_volatile = false;
return KSuccess;
}
m_unused_committed_pages += pages_updated;
return pages_updated;
if (!MM.commit_user_physical_pages(committed_pages_needed))
return ENOMEM;
m_unused_committed_pages = committed_pages_needed;
for (auto& page : m_physical_pages) {
if (page->is_shared_zero_page())
page = MM.lazy_committed_page();
}
m_volatile = false;
m_was_purged = false;
return KSuccess;
}
NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>, size_t page_index)
NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>)
{
{
ScopedSpinLock lock(m_lock);
VERIFY(m_unused_committed_pages > 0);
// We shouldn't have any committed page tags in volatile regions
VERIFY([&]() {
for (auto* purgeable_ranges : m_purgeable_ranges) {
if (purgeable_ranges->is_volatile(page_index))
return false;
}
return true;
}());
m_unused_committed_pages--;
--m_unused_committed_pages;
}
return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
}
@ -404,19 +290,20 @@ size_t AnonymousVMObject::cow_pages() const
return m_cow_map.count_slow(true);
}
bool AnonymousVMObject::is_nonvolatile(size_t page_index)
{
if (m_volatile_ranges_cache_dirty)
update_volatile_cache();
return !m_volatile_ranges_cache.contains(page_index);
}
PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
{
VERIFY_INTERRUPTS_DISABLED();
ScopedSpinLock lock(m_lock);
if (is_volatile()) {
// A COW fault in a volatile region? Userspace is writing to volatile memory, this is a bug. Crash.
dbgln("COW fault in volatile region, will crash.");
return PageFaultResponse::ShouldCrash;
}
auto& page_slot = physical_pages()[page_index];
bool have_committed = m_shared_committed_cow_pages && is_nonvolatile(page_index);
bool have_committed = m_shared_committed_cow_pages;
if (page_slot->ref_count() == 1) {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page but nobody is sharing it anymore. Remap r/w");
set_should_cow(page_index, false);
@ -462,4 +349,33 @@ PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, Virtual
return PageFaultResponse::Continue;
}
CommittedCowPages::CommittedCowPages(size_t committed_pages)
: m_committed_pages(committed_pages)
{
}
CommittedCowPages::~CommittedCowPages()
{
// Return unused committed pages
if (m_committed_pages > 0)
MM.uncommit_user_physical_pages(m_committed_pages);
}
NonnullRefPtr<PhysicalPage> CommittedCowPages::allocate_one()
{
VERIFY(m_committed_pages > 0);
m_committed_pages--;
return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
}
bool CommittedCowPages::return_one()
{
VERIFY(m_committed_pages > 0);
m_committed_pages--;
MM.uncommit_user_physical_pages(1);
return m_committed_pages == 0;
}
}