1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 07:48:11 +00:00

Kernel: Move kmalloc heaps and super pages inside .bss segment

The kernel ignored the first 8 MiB of RAM while parsing the memory map
because the kmalloc heaps and the super physical pages lived here. Move
all that stuff inside the .bss segment so that those memory regions are
accounted for, otherwise we risk overwriting boot modules placed next
to the kernel.
This commit is contained in:
Jean-Baptiste Boric 2021-01-20 17:49:55 +01:00 committed by Andreas Kling
parent 5cd1217b6e
commit 3cbe805486
4 changed files with 45 additions and 44 deletions

View file

@ -49,6 +49,12 @@ extern FlatPtr start_of_kernel_text;
extern FlatPtr start_of_kernel_data;
extern FlatPtr end_of_kernel_bss;
extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
extern size_t multiboot_copy_boot_modules_count;
// Treat the super pages as logically separate from .bss
__attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB];
namespace Kernel {
// NOTE: We can NOT use AK::Singleton for this class, because
@ -103,14 +109,9 @@ void MemoryManager::protect_kernel_image()
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_writable(false);
}
if (Processor::current().has_feature(CPUFeature::NX)) {
// Disable execution of the kernel data and bss segments, as well as the kernel heap.
for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_bss; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_execute_disabled(true);
}
for (size_t i = FlatPtr(kmalloc_start); i < FlatPtr(kmalloc_end); i += PAGE_SIZE) {
// Disable execution of the kernel data, bss and heap segments.
for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_image; i += PAGE_SIZE) {
auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i));
pte.set_execute_disabled(true);
}
@ -120,14 +121,12 @@ void MemoryManager::protect_kernel_image()
void MemoryManager::parse_memory_map()
{
RefPtr<PhysicalRegion> region;
bool region_is_super = false;
// We need to make sure we exclude the kmalloc range as well as the kernel image.
// The kmalloc range directly follows the kernel image
const PhysicalAddress used_range_start(virtual_to_low_physical(FlatPtr(&start_of_kernel_image)));
const PhysicalAddress used_range_end(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(kmalloc_end))));
klog() << "MM: kernel range: " << used_range_start << " - " << PhysicalAddress(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(&end_of_kernel_image))));
klog() << "MM: kmalloc range: " << PhysicalAddress(virtual_to_low_physical(FlatPtr(kmalloc_start))) << " - " << used_range_end;
const PhysicalAddress used_range_end(virtual_to_low_physical(FlatPtr(&end_of_kernel_image)));
klog() << "MM: kernel range: " << used_range_start << " - " << used_range_end;
auto* mmap = (multiboot_memory_map_t*)(low_physical_to_virtual(multiboot_info_ptr->mmap_addr));
for (; (unsigned long)mmap < (low_physical_to_virtual(multiboot_info_ptr->mmap_addr)) + (multiboot_info_ptr->mmap_length); mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
@ -161,31 +160,32 @@ void MemoryManager::parse_memory_map()
for (size_t page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
auto addr = PhysicalAddress(page_base);
if (addr.get() < used_range_end.get() && addr.get() >= used_range_start.get())
// Skip used memory ranges.
bool should_skip = false;
for (auto used_range : m_used_memory_ranges) {
if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) {
should_skip = true;
break;
}
}
if (should_skip)
continue;
if (page_base < 7 * MiB) {
// nothing
} else if (page_base >= 7 * MiB && page_base < 8 * MiB) {
if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_super_physical_regions.last();
region_is_super = true;
} else {
region->expand(region->lower(), addr);
}
// Assign page to user physical region.
if (region.is_null() || region->upper().offset(PAGE_SIZE) != addr) {
m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_user_physical_regions.last();
} else {
if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_user_physical_regions.last();
region_is_super = false;
} else {
region->expand(region->lower(), addr);
}
region->expand(region->lower(), addr);
}
}
}
// Append statically-allocated super physical region.
m_super_physical_regions.append(PhysicalRegion::create(
PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))),
PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages))))));
for (auto& region : m_super_physical_regions) {
m_super_physical_pages += region.finalize_capacity();
klog() << "Super physical region: " << region.lower() << " - " << region.upper();