1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-25 16:57:35 +00:00

Kernel: Simplify the way we pass HardwareTimers around a bit

Instead of passing around indices into the m_hardware_timers vector,
just pass around a HardwareTimer* instead.
This commit is contained in:
Andreas Kling 2020-04-16 18:04:31 +02:00
parent b0b204822f
commit 44d58b85ef
2 changed files with 44 additions and 58 deletions

View file

@ -41,9 +41,10 @@ namespace Kernel {
static TimeManagement* s_time_management; static TimeManagement* s_time_management;
bool TimeManagement::initialized() TimeManagement& TimeManagement::the()
{ {
return s_time_management != nullptr; ASSERT(s_time_management);
return *s_time_management;
} }
bool TimeManagement::is_system_timer(const HardwareTimer& timer) const bool TimeManagement::is_system_timer(const HardwareTimer& timer) const
@ -64,7 +65,7 @@ time_t TimeManagement::epoch_time() const
void TimeManagement::initialize() void TimeManagement::initialize()
{ {
ASSERT(!TimeManagement::initialized()); ASSERT(!s_time_management);
if (kernel_command_line().lookup("time").value_or("modern") == "legacy") if (kernel_command_line().lookup("time").value_or("modern") == "legacy")
s_time_management = new TimeManagement(false); s_time_management = new TimeManagement(false);
else else
@ -118,35 +119,30 @@ TimeManagement::TimeManagement(bool probe_non_legacy_hardware_timers)
ASSERT_NOT_REACHED(); ASSERT_NOT_REACHED();
} }
Vector<size_t> TimeManagement::scan_and_initialize_periodic_timers() Vector<HardwareTimer*> TimeManagement::scan_and_initialize_periodic_timers()
{ {
bool enable_periodic_mode = is_hpet_periodic_mode_allowed(); bool should_enable = is_hpet_periodic_mode_allowed();
dbg() << "Scanning for Periodic timers"; dbg() << "Time: Scanning for periodic timers";
Vector<size_t> periodic_timers_indexes; Vector<HardwareTimer*> timers;
periodic_timers_indexes.ensure_capacity(m_hardware_timers.size()); for (auto& hardware_timer : m_hardware_timers) {
for (size_t index = 0; index < m_hardware_timers.size(); index++) { if (hardware_timer && hardware_timer->is_periodic_capable()) {
if (!m_hardware_timers[index].is_null()) { timers.append(hardware_timer);
if (m_hardware_timers[index]->is_periodic_capable()) { if (should_enable)
periodic_timers_indexes.append(index); hardware_timer->set_periodic();
if (enable_periodic_mode)
m_hardware_timers[index]->set_periodic();
}
} }
} }
return periodic_timers_indexes; return timers;
} }
Vector<size_t> TimeManagement::scan_for_non_periodic_timers() Vector<HardwareTimer*> TimeManagement::scan_for_non_periodic_timers()
{ {
dbg() << "Scanning for Non-Periodic timers"; dbg() << "Time: Scanning for non-periodic timers";
Vector<size_t> non_periodic_timers_indexes; Vector<HardwareTimer*> timers;
non_periodic_timers_indexes.ensure_capacity(m_hardware_timers.size()); for (auto& hardware_timer : m_hardware_timers) {
for (size_t index = 0; index < m_hardware_timers.size(); index++) { if (hardware_timer && !hardware_timer->is_periodic_capable())
if (!m_hardware_timers[index].is_null()) timers.append(hardware_timer);
if (!m_hardware_timers[index]->is_periodic_capable())
non_periodic_timers_indexes.append(index);
} }
return non_periodic_timers_indexes; return timers;
} }
bool TimeManagement::is_hpet_periodic_mode_allowed() bool TimeManagement::is_hpet_periodic_mode_allowed()
@ -174,32 +170,27 @@ bool TimeManagement::probe_and_set_non_legacy_hardware_timers()
} }
dbg() << "HPET: Setting appropriate functions to timers."; dbg() << "HPET: Setting appropriate functions to timers.";
m_hardware_timers.resize(HPET::the().comparators().size()); for (auto& hpet_comparator : HPET::the().comparators())
for (size_t index = 0; index < m_hardware_timers.size(); index++) { m_hardware_timers.append(hpet_comparator);
m_hardware_timers[index] = HPET::the().comparators()[index];
#ifdef TIME_DEBUG
dbg() << m_hardware_timers[index].ptr() << " <- " << HPET::the().comparators()[index].ptr();
#endif
}
auto periodic_timer_indexes = scan_and_initialize_periodic_timers(); auto periodic_timers = scan_and_initialize_periodic_timers();
auto non_periodic_timer_indexes = scan_for_non_periodic_timers(); auto non_periodic_timers = scan_for_non_periodic_timers();
if (is_hpet_periodic_mode_allowed()) if (is_hpet_periodic_mode_allowed())
ASSERT(!periodic_timer_indexes.is_empty()); ASSERT(!periodic_timers.is_empty());
ASSERT(periodic_timer_indexes.size() + non_periodic_timer_indexes.size() >= 2); ASSERT(periodic_timers.size() + non_periodic_timers.size() >= 2);
if (periodic_timer_indexes.size() >= 2) { if (periodic_timers.size() >= 2) {
m_time_keeper_timer = m_hardware_timers[periodic_timer_indexes[1]]; m_time_keeper_timer = periodic_timers[1];
m_system_timer = m_hardware_timers[periodic_timer_indexes[0]]; m_system_timer = periodic_timers[0];
} else { } else {
if (periodic_timer_indexes.size() == 1) { if (periodic_timers.size() == 1) {
m_time_keeper_timer = m_hardware_timers[periodic_timer_indexes[0]]; m_time_keeper_timer = periodic_timers[0];
m_system_timer = m_hardware_timers[non_periodic_timer_indexes[0]]; m_system_timer = non_periodic_timers[0];
} else { } else {
m_time_keeper_timer = m_hardware_timers[non_periodic_timer_indexes[1]]; m_time_keeper_timer = non_periodic_timers[1];
m_system_timer = m_hardware_timers[non_periodic_timer_indexes[0]]; m_system_timer = non_periodic_timers[0];
} }
} }
@ -223,19 +214,13 @@ bool TimeManagement::probe_and_set_legacy_hardware_timers()
} }
} }
m_hardware_timers[0] = PIT::initialize([](const RegisterState& regs) { update_time(regs); }); m_hardware_timers.append(PIT::initialize([](const RegisterState& regs) { update_time(regs); }));
m_hardware_timers[1] = RealTimeClock::create([](const RegisterState& regs) { update_scheduler_ticks(regs); }); m_hardware_timers.append(RealTimeClock::create([](const RegisterState& regs) { update_scheduler_ticks(regs); }));
m_time_keeper_timer = m_hardware_timers[0]; m_time_keeper_timer = m_hardware_timers[0];
m_system_timer = m_hardware_timers[1]; m_system_timer = m_hardware_timers[1];
return true; return true;
} }
TimeManagement& TimeManagement::the()
{
ASSERT(TimeManagement::initialized());
return *s_time_management;
}
void TimeManagement::update_time(const RegisterState& regs) void TimeManagement::update_time(const RegisterState& regs)
{ {
TimeManagement::the().increment_time_since_boot(regs); TimeManagement::the().increment_time_since_boot(regs);

View file

@ -27,10 +27,8 @@
#pragma once #pragma once
#include <AK/FixedArray.h> #include <AK/FixedArray.h>
#include <AK/Optional.h> #include <AK/RefPtr.h>
#include <AK/OwnPtr.h>
#include <AK/Types.h> #include <AK/Types.h>
#include <AK/WeakPtr.h>
#include <Kernel/UnixTypes.h> #include <Kernel/UnixTypes.h>
namespace Kernel { namespace Kernel {
@ -38,7 +36,10 @@ namespace Kernel {
#define OPTIMAL_TICKS_PER_SECOND_RATE 1000 #define OPTIMAL_TICKS_PER_SECOND_RATE 1000
class HardwareTimer; class HardwareTimer;
class TimeManagement { class TimeManagement {
AK_MAKE_ETERNAL;
public: public:
static bool initialized(); static bool initialized();
static void initialize(); static void initialize();
@ -66,9 +67,9 @@ private:
explicit TimeManagement(bool probe_non_legacy_hardware_timers); explicit TimeManagement(bool probe_non_legacy_hardware_timers);
bool probe_and_set_legacy_hardware_timers(); bool probe_and_set_legacy_hardware_timers();
bool probe_and_set_non_legacy_hardware_timers(); bool probe_and_set_non_legacy_hardware_timers();
Vector<size_t> scan_and_initialize_periodic_timers(); Vector<HardwareTimer*> scan_and_initialize_periodic_timers();
Vector<size_t> scan_for_non_periodic_timers(); Vector<HardwareTimer*> scan_for_non_periodic_timers();
FixedArray<RefPtr<HardwareTimer>> m_hardware_timers { 2 }; Vector<RefPtr<HardwareTimer>> m_hardware_timers;
u32 m_ticks_this_second { 0 }; u32 m_ticks_this_second { 0 };
u32 m_seconds_since_boot { 0 }; u32 m_seconds_since_boot { 0 };