1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 16:18:12 +00:00

Kernel/USB: Move the USB components as a subfolder to the Bus directory

This commit is contained in:
Liav A 2021-06-25 09:51:22 +03:00 committed by Andreas Kling
parent 6568bb47cb
commit 5073bf8e75
15 changed files with 26 additions and 26 deletions

View file

@ -1,39 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Types.h>
namespace Kernel::USB {
// Setup descriptor bit definitions
static constexpr u8 BM_REQUEST_HOST_TO_DEVICE = (0 << 7);
static constexpr u8 BM_REQUEST_DEVICE_TO_HOST = (1 << 7);
static constexpr u8 BM_REQUEST_TYPE_STANDARD = (0 << 5);
static constexpr u8 BM_REQUEST_TYPE_CLASS = (1 << 5);
static constexpr u8 BM_REQUEST_TYPE_VENDOR = (2 << 5);
static constexpr u8 BM_REQUEST_TYPE_RESERVED = (3 << 5);
static constexpr u8 BM_REQUEST_RECIPEINT_DEVICE = (0 << 0);
static constexpr u8 BM_REQUEST_RECIPIENT_INTERFACE = (1 << 0);
static constexpr u8 BM_REQUEST_RECIPIENT_ENDPOINT = (2 << 0);
static constexpr u8 BM_REQUEST_RECIPIENT_OTHER = (3 << 0);
//
// This is also known as the "setup" packet. It's attached to the
// first TD in the chain and is the first piece of data sent to the
// USB device over the bus.
// https://beyondlogic.org/usbnutshell/usb6.shtml#StandardEndpointRequests
//
struct USBRequestData {
u8 request_type;
u8 request;
u16 value;
u16 index;
u16 length;
};
}

View file

@ -1,791 +0,0 @@
/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/JsonArraySerializer.h>
#include <AK/JsonObjectSerializer.h>
#include <AK/Platform.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Debug.h>
#include <Kernel/Devices/USB/UHCIController.h>
#include <Kernel/Devices/USB/USBRequest.h>
#include <Kernel/KBufferBuilder.h>
#include <Kernel/Process.h>
#include <Kernel/ProcessExposed.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
static constexpr u8 MAXIMUM_NUMBER_OF_TDS = 128; // Upper pool limit. This consumes the second page we have allocated
static constexpr u8 MAXIMUM_NUMBER_OF_QHS = 64;
static constexpr u8 RETRY_COUNTER_RELOAD = 3;
namespace Kernel::USB {
static UHCIController* s_the;
static constexpr u16 UHCI_USBCMD_RUN = 0x0001;
static constexpr u16 UHCI_USBCMD_HOST_CONTROLLER_RESET = 0x0002;
static constexpr u16 UHCI_USBCMD_GLOBAL_RESET = 0x0004;
static constexpr u16 UHCI_USBCMD_ENTER_GLOBAL_SUSPEND_MODE = 0x0008;
static constexpr u16 UHCI_USBCMD_FORCE_GLOBAL_RESUME = 0x0010;
static constexpr u16 UHCI_USBCMD_SOFTWARE_DEBUG = 0x0020;
static constexpr u16 UHCI_USBCMD_CONFIGURE_FLAG = 0x0040;
static constexpr u16 UHCI_USBCMD_MAX_PACKET = 0x0080;
static constexpr u16 UHCI_USBSTS_HOST_CONTROLLER_HALTED = 0x0020;
static constexpr u16 UHCI_USBSTS_HOST_CONTROLLER_PROCESS_ERROR = 0x0010;
static constexpr u16 UHCI_USBSTS_PCI_BUS_ERROR = 0x0008;
static constexpr u16 UHCI_USBSTS_RESUME_RECEIVED = 0x0004;
static constexpr u16 UHCI_USBSTS_USB_ERROR_INTERRUPT = 0x0002;
static constexpr u16 UHCI_USBSTS_USB_INTERRUPT = 0x0001;
static constexpr u8 UHCI_USBINTR_TIMEOUT_CRC_ENABLE = 0x01;
static constexpr u8 UHCI_USBINTR_RESUME_INTR_ENABLE = 0x02;
static constexpr u8 UHCI_USBINTR_IOC_ENABLE = 0x04;
static constexpr u8 UHCI_USBINTR_SHORT_PACKET_INTR_ENABLE = 0x08;
static constexpr u16 UHCI_FRAMELIST_FRAME_COUNT = 1024; // Each entry is 4 bytes in our allocated page
static constexpr u16 UHCI_FRAMELIST_FRAME_INVALID = 0x0001;
// Port stuff
static constexpr u8 UHCI_ROOT_PORT_COUNT = 2;
static constexpr u16 UHCI_PORTSC_CURRRENT_CONNECT_STATUS = 0x0001;
static constexpr u16 UHCI_PORTSC_CONNECT_STATUS_CHANGED = 0x0002;
static constexpr u16 UHCI_PORTSC_PORT_ENABLED = 0x0004;
static constexpr u16 UHCI_PORTSC_PORT_ENABLE_CHANGED = 0x0008;
static constexpr u16 UHCI_PORTSC_LINE_STATUS = 0x0030;
static constexpr u16 UHCI_PORTSC_RESUME_DETECT = 0x40;
static constexpr u16 UHCI_PORTSC_LOW_SPEED_DEVICE = 0x0100;
static constexpr u16 UHCI_PORTSC_PORT_RESET = 0x0200;
static constexpr u16 UHCI_PORTSC_SUSPEND = 0x1000;
// *BSD and a few other drivers seem to use this number
static constexpr u8 UHCI_NUMBER_OF_ISOCHRONOUS_TDS = 128;
static constexpr u16 UHCI_NUMBER_OF_FRAMES = 1024;
class ProcFSUSBBusFolder;
static ProcFSUSBBusFolder* s_procfs_usb_bus_folder;
class ProcFSUSBDeviceInformation : public ProcFSGlobalInformation {
friend class ProcFSUSBBusFolder;
public:
virtual ~ProcFSUSBDeviceInformation() override {};
static NonnullRefPtr<ProcFSUSBDeviceInformation> create(USB::Device&);
RefPtr<USB::Device> device() const { return m_device; }
protected:
explicit ProcFSUSBDeviceInformation(USB::Device& device)
: ProcFSGlobalInformation(String::formatted("{}", device.address()))
, m_device(device)
{
}
virtual bool output(KBufferBuilder& builder) override
{
VERIFY(m_device); // Something has gone very wrong if this isn't true
JsonArraySerializer array { builder };
auto obj = array.add_object();
obj.add("usb_spec_compliance_bcd", m_device->device_descriptor().usb_spec_compliance_bcd);
obj.add("device_class", m_device->device_descriptor().device_class);
obj.add("device_sub_class", m_device->device_descriptor().device_sub_class);
obj.add("device_protocol", m_device->device_descriptor().device_protocol);
obj.add("max_packet_size", m_device->device_descriptor().max_packet_size);
obj.add("vendor_id", m_device->device_descriptor().vendor_id);
obj.add("product_id", m_device->device_descriptor().product_id);
obj.add("device_release_bcd", m_device->device_descriptor().device_release_bcd);
obj.add("manufacturer_id_descriptor_index", m_device->device_descriptor().manufacturer_id_descriptor_index);
obj.add("product_string_descriptor_index", m_device->device_descriptor().product_string_descriptor_index);
obj.add("serial_number_descriptor_index", m_device->device_descriptor().serial_number_descriptor_index);
obj.add("num_configurations", m_device->device_descriptor().num_configurations);
obj.finish();
array.finish();
return true;
}
IntrusiveListNode<ProcFSUSBDeviceInformation, RefPtr<ProcFSUSBDeviceInformation>> m_list_node;
RefPtr<USB::Device> m_device;
};
class ProcFSUSBBusFolder final : public ProcFSExposedFolder {
friend class ProcFSComponentsRegistrar;
public:
static void initialize();
void plug(USB::Device&);
void unplug(USB::Device&);
virtual KResultOr<size_t> entries_count() const override;
virtual KResult traverse_as_directory(unsigned, Function<bool(const FS::DirectoryEntryView&)>) const override;
virtual RefPtr<ProcFSExposedComponent> lookup(StringView name) override;
private:
ProcFSUSBBusFolder(const ProcFSBusDirectory&);
RefPtr<ProcFSUSBDeviceInformation> device_node_for(USB::Device& device);
IntrusiveList<ProcFSUSBDeviceInformation, RefPtr<ProcFSUSBDeviceInformation>, &ProcFSUSBDeviceInformation::m_list_node> m_device_nodes;
mutable SpinLock<u8> m_lock;
};
KResultOr<size_t> ProcFSUSBBusFolder::entries_count() const
{
ScopedSpinLock lock(m_lock);
return m_device_nodes.size_slow();
}
KResult ProcFSUSBBusFolder::traverse_as_directory(unsigned fsid, Function<bool(const FS::DirectoryEntryView&)> callback) const
{
ScopedSpinLock lock(m_lock);
VERIFY(m_parent_folder);
callback({ ".", { fsid, component_index() }, 0 });
callback({ "..", { fsid, m_parent_folder->component_index() }, 0 });
for (auto& device_node : m_device_nodes) {
InodeIdentifier identifier = { fsid, device_node.component_index() };
callback({ device_node.name(), identifier, 0 });
}
return KSuccess;
}
RefPtr<ProcFSExposedComponent> ProcFSUSBBusFolder::lookup(StringView name)
{
ScopedSpinLock lock(m_lock);
for (auto& device_node : m_device_nodes) {
if (device_node.name() == name) {
return device_node;
}
}
return {};
}
RefPtr<ProcFSUSBDeviceInformation> ProcFSUSBBusFolder::device_node_for(USB::Device& device)
{
RefPtr<USB::Device> checked_device = device;
for (auto& device_node : m_device_nodes) {
if (device_node.device().ptr() == checked_device.ptr())
return device_node;
}
return {};
}
void ProcFSUSBBusFolder::plug(USB::Device& new_device)
{
ScopedSpinLock lock(m_lock);
auto device_node = device_node_for(new_device);
VERIFY(!device_node);
m_device_nodes.append(ProcFSUSBDeviceInformation::create(new_device));
}
void ProcFSUSBBusFolder::unplug(USB::Device& deleted_device)
{
ScopedSpinLock lock(m_lock);
auto device_node = device_node_for(deleted_device);
VERIFY(device_node);
device_node->m_list_node.remove();
}
UNMAP_AFTER_INIT ProcFSUSBBusFolder::ProcFSUSBBusFolder(const ProcFSBusDirectory& buses_folder)
: ProcFSExposedFolder("usb"sv, buses_folder)
{
}
UNMAP_AFTER_INIT void ProcFSUSBBusFolder::initialize()
{
auto folder = adopt_ref(*new ProcFSUSBBusFolder(ProcFSComponentsRegistrar::the().buses_folder()));
ProcFSComponentsRegistrar::the().register_new_bus_folder(folder);
s_procfs_usb_bus_folder = folder;
}
NonnullRefPtr<ProcFSUSBDeviceInformation> ProcFSUSBDeviceInformation::create(USB::Device& device)
{
return adopt_ref(*new ProcFSUSBDeviceInformation(device));
}
UHCIController& UHCIController::the()
{
return *s_the;
}
UNMAP_AFTER_INIT void UHCIController::detect()
{
if (kernel_command_line().disable_uhci_controller())
return;
// FIXME: We create the /proc/bus/usb representation here, but it should really be handled
// in a more broad singleton than this once we refactor things in USB subsystem.
ProcFSUSBBusFolder::initialize();
PCI::enumerate([&](const PCI::Address& address, PCI::ID id) {
if (address.is_null())
return;
if (PCI::get_class(address) == 0xc && PCI::get_subclass(address) == 0x03 && PCI::get_programming_interface(address) == 0) {
if (!s_the) {
s_the = new UHCIController(address, id);
s_the->spawn_port_proc();
}
}
});
}
UNMAP_AFTER_INIT UHCIController::UHCIController(PCI::Address address, PCI::ID id)
: PCI::Device(address)
, m_io_base(PCI::get_BAR4(pci_address()) & ~1)
{
dmesgln("UHCI: Controller found {} @ {}", id, address);
dmesgln("UHCI: I/O base {}", m_io_base);
dmesgln("UHCI: Interrupt line: {}", PCI::get_interrupt_line(pci_address()));
reset();
start();
}
UNMAP_AFTER_INIT UHCIController::~UHCIController()
{
}
RefPtr<USB::Device> const UHCIController::get_device_at_port(USB::Device::PortNumber port)
{
if (!m_devices.at(to_underlying(port)))
return nullptr;
return m_devices.at(to_underlying(port));
}
RefPtr<USB::Device> const UHCIController::get_device_from_address(u8 device_address)
{
for (auto const& device : m_devices) {
if (!device)
continue;
if (device->address() == device_address)
return device;
}
return nullptr;
}
void UHCIController::reset()
{
stop();
write_usbcmd(UHCI_USBCMD_HOST_CONTROLLER_RESET);
// FIXME: Timeout
for (;;) {
if (read_usbcmd() & UHCI_USBCMD_HOST_CONTROLLER_RESET)
continue;
break;
}
// Let's allocate the physical page for the Frame List (which is 4KiB aligned)
auto framelist_vmobj = ContiguousVMObject::create_with_size(PAGE_SIZE);
m_framelist = MemoryManager::the().allocate_kernel_region_with_vmobject(*framelist_vmobj, PAGE_SIZE, "UHCI Framelist", Region::Access::Write);
dbgln("UHCI: Allocated framelist at physical address {}", m_framelist->physical_page(0)->paddr());
dbgln("UHCI: Framelist is at virtual address {}", m_framelist->vaddr());
write_sofmod(64); // 1mS frame time
create_structures();
setup_schedule();
write_flbaseadd(m_framelist->physical_page(0)->paddr().get()); // Frame list (physical) address
write_frnum(0); // Set the initial frame number
// FIXME: Work out why interrupts lock up the entire system....
// Disable UHCI Controller from raising an IRQ
write_usbintr(0);
dbgln("UHCI: Reset completed");
}
UNMAP_AFTER_INIT void UHCIController::create_structures()
{
// Let's allocate memory for both the QH and TD pools
// First the QH pool and all of the Interrupt QH's
auto qh_pool_vmobject = ContiguousVMObject::create_with_size(2 * PAGE_SIZE);
m_qh_pool = MemoryManager::the().allocate_kernel_region_with_vmobject(*qh_pool_vmobject, 2 * PAGE_SIZE, "UHCI Queue Head Pool", Region::Access::Write);
memset(m_qh_pool->vaddr().as_ptr(), 0, 2 * PAGE_SIZE); // Zero out both pages
// Let's populate our free qh list (so we have some we can allocate later on)
m_free_qh_pool.resize(MAXIMUM_NUMBER_OF_TDS);
for (size_t i = 0; i < m_free_qh_pool.size(); i++) {
auto placement_addr = reinterpret_cast<void*>(m_qh_pool->vaddr().get() + (i * sizeof(QueueHead)));
auto paddr = static_cast<u32>(m_qh_pool->physical_page(0)->paddr().get() + (i * sizeof(QueueHead)));
m_free_qh_pool.at(i) = new (placement_addr) QueueHead(paddr);
}
// Create the Full Speed, Low Speed Control and Bulk Queue Heads
m_interrupt_transfer_queue = allocate_queue_head();
m_lowspeed_control_qh = allocate_queue_head();
m_fullspeed_control_qh = allocate_queue_head();
m_bulk_qh = allocate_queue_head();
m_dummy_qh = allocate_queue_head();
// Now the Transfer Descriptor pool
auto td_pool_vmobject = ContiguousVMObject::create_with_size(2 * PAGE_SIZE);
m_td_pool = MemoryManager::the().allocate_kernel_region_with_vmobject(*td_pool_vmobject, 2 * PAGE_SIZE, "UHCI Transfer Descriptor Pool", Region::Access::Write);
memset(m_td_pool->vaddr().as_ptr(), 0, 2 * PAGE_SIZE);
// Set up the Isochronous Transfer Descriptor list
m_iso_td_list.resize(UHCI_NUMBER_OF_ISOCHRONOUS_TDS);
for (size_t i = 0; i < m_iso_td_list.size(); i++) {
auto placement_addr = reinterpret_cast<void*>(m_td_pool->vaddr().get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
auto paddr = static_cast<u32>(m_td_pool->physical_page(0)->paddr().get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
// Place a new Transfer Descriptor with a 1:1 in our region
// The pointer returned by `new()` lines up exactly with the value
// that we store in `paddr`, meaning our member functions directly
// access the raw descriptor (that we later send to the controller)
m_iso_td_list.at(i) = new (placement_addr) Kernel::USB::TransferDescriptor(paddr);
auto transfer_descriptor = m_iso_td_list.at(i);
transfer_descriptor->set_in_use(true); // Isochronous transfers are ALWAYS marked as in use (in case we somehow get allocated one...)
transfer_descriptor->set_isochronous();
transfer_descriptor->link_queue_head(m_interrupt_transfer_queue->paddr());
if constexpr (UHCI_VERBOSE_DEBUG)
transfer_descriptor->print();
}
m_free_td_pool.resize(MAXIMUM_NUMBER_OF_TDS);
for (size_t i = 0; i < m_free_td_pool.size(); i++) {
auto placement_addr = reinterpret_cast<void*>(m_td_pool->vaddr().offset(PAGE_SIZE).get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
auto paddr = static_cast<u32>(m_td_pool->physical_page(1)->paddr().get() + (i * sizeof(Kernel::USB::TransferDescriptor)));
// Place a new Transfer Descriptor with a 1:1 in our region
// The pointer returned by `new()` lines up exactly with the value
// that we store in `paddr`, meaning our member functions directly
// access the raw descriptor (that we later send to the controller)
m_free_td_pool.at(i) = new (placement_addr) Kernel::USB::TransferDescriptor(paddr);
if constexpr (UHCI_VERBOSE_DEBUG) {
auto transfer_descriptor = m_free_td_pool.at(i);
transfer_descriptor->print();
}
}
if constexpr (UHCI_DEBUG) {
dbgln("UHCI: Pool information:");
dbgln(" qh_pool: {}, length: {}", PhysicalAddress(m_qh_pool->physical_page(0)->paddr()), m_qh_pool->range().size());
dbgln(" td_pool: {}, length: {}", PhysicalAddress(m_td_pool->physical_page(0)->paddr()), m_td_pool->range().size());
}
}
UNMAP_AFTER_INIT void UHCIController::setup_schedule()
{
//
// https://github.com/alkber/minix3-usbsubsystem/blob/master/usb/uhci-hcd.c
//
// This lad probably has the best explanation as to how this is actually done. I'll try and
// explain it here to so that there's no need for anyone to go hunting for this shit again, because
// the USB spec and Intel explain next to nothing.
// According to the USB spec (and the UHCI datasheet), 90% of the bandwidth should be used for
// Isochronous and """Interrupt""" related transfers, with the rest being used for control and bulk
// transfers.
// That is, most of the time, the schedule is going to be executing either an Isochronous transfer
// in our framelist, or an Interrupt transfer. The allocation in `create_structures` reflects this.
//
// Each frame has it's own Isochronous transfer Transfer Descriptor(s) that point to each other
// horizontally in the list. The end of these transfers then point to the Interrupt Queue Headers,
// in which we can attach Transfer Descriptors (related to Interrupt Transfers). These are attached
// to the Queue Head _vertically_. We need to ensure that these are executed every 8ms, so they are inserted
// at different points in the schedule (TODO: How do we do this?!?!). After the Interrupt Transfer Queue Heads,
// we attach the Control Queue Heads. We need two in total, one for Low Speed devices, and one for Full Speed
// USB devices. Finally, we attach the Bulk Transfer Queue Head.
// Not specified in the datasheet, however, is another Queue Head with an "inactive" Transfer Descriptor. This
// is to circumvent a bug in the silicon of the PIIX4's UHCI controller.
// https://github.com/openbsd/src/blob/master/sys/dev/usb/uhci.c#L390
//
m_interrupt_transfer_queue->link_next_queue_head(m_lowspeed_control_qh);
m_interrupt_transfer_queue->terminate_element_link_ptr();
m_lowspeed_control_qh->link_next_queue_head(m_fullspeed_control_qh);
m_lowspeed_control_qh->terminate_element_link_ptr();
m_fullspeed_control_qh->link_next_queue_head(m_bulk_qh);
m_fullspeed_control_qh->terminate_element_link_ptr();
m_bulk_qh->link_next_queue_head(m_dummy_qh);
m_bulk_qh->terminate_element_link_ptr();
auto piix4_td_hack = allocate_transfer_descriptor();
piix4_td_hack->terminate();
piix4_td_hack->set_max_len(0x7ff); // Null data packet
piix4_td_hack->set_device_address(0x7f);
piix4_td_hack->set_packet_id(PacketID::IN);
m_dummy_qh->terminate_with_stray_descriptor(piix4_td_hack);
m_dummy_qh->terminate_element_link_ptr();
u32* framelist = reinterpret_cast<u32*>(m_framelist->vaddr().as_ptr());
for (int frame = 0; frame < UHCI_NUMBER_OF_FRAMES; frame++) {
// Each frame pointer points to iso_td % NUM_ISO_TDS
framelist[frame] = m_iso_td_list.at(frame % UHCI_NUMBER_OF_ISOCHRONOUS_TDS)->paddr();
}
m_interrupt_transfer_queue->print();
m_lowspeed_control_qh->print();
m_fullspeed_control_qh->print();
m_bulk_qh->print();
m_dummy_qh->print();
}
QueueHead* UHCIController::allocate_queue_head() const
{
for (QueueHead* queue_head : m_free_qh_pool) {
if (!queue_head->in_use()) {
queue_head->set_in_use(true);
dbgln_if(UHCI_DEBUG, "UHCI: Allocated a new Queue Head! Located @ {} ({})", VirtualAddress(queue_head), PhysicalAddress(queue_head->paddr()));
return queue_head;
}
}
return nullptr; // Huh!? We're outta queue heads!
}
TransferDescriptor* UHCIController::allocate_transfer_descriptor() const
{
for (TransferDescriptor* transfer_descriptor : m_free_td_pool) {
if (!transfer_descriptor->in_use()) {
transfer_descriptor->set_in_use(true);
dbgln_if(UHCI_DEBUG, "UHCI: Allocated a new Transfer Descriptor! Located @ {} ({})", VirtualAddress(transfer_descriptor), PhysicalAddress(transfer_descriptor->paddr()));
return transfer_descriptor;
}
}
return nullptr; // Huh?! We're outta TDs!!
}
void UHCIController::stop()
{
write_usbcmd(read_usbcmd() & ~UHCI_USBCMD_RUN);
// FIXME: Timeout
for (;;) {
if (read_usbsts() & UHCI_USBSTS_HOST_CONTROLLER_HALTED)
break;
}
}
void UHCIController::start()
{
write_usbcmd(read_usbcmd() | UHCI_USBCMD_RUN);
// FIXME: Timeout
for (;;) {
if (!(read_usbsts() & UHCI_USBSTS_HOST_CONTROLLER_HALTED))
break;
}
dbgln("UHCI: Started");
}
TransferDescriptor* UHCIController::create_transfer_descriptor(Pipe& pipe, PacketID direction, size_t data_len)
{
TransferDescriptor* td = allocate_transfer_descriptor();
if (td == nullptr) {
return nullptr;
}
u16 max_len = (data_len > 0) ? (data_len - 1) : 0x7ff;
VERIFY(max_len <= 0x4FF || max_len == 0x7FF); // According to the datasheet, anything in the range of 0x500 to 0x7FE are illegal
td->set_token((max_len << TD_TOKEN_MAXLEN_SHIFT) | ((pipe.data_toggle() ? 1 : 0) << TD_TOKEN_DATA_TOGGLE_SHIFT) | (pipe.endpoint_address() << TD_TOKEN_ENDPOINT_SHIFT) | (pipe.device_address() << TD_TOKEN_DEVICE_ADDR_SHIFT) | (static_cast<u8>(direction)));
pipe.set_toggle(!pipe.data_toggle());
if (pipe.type() == Pipe::Type::Isochronous) {
td->set_isochronous();
} else {
if (direction == PacketID::IN) {
td->set_short_packet_detect();
}
}
// Set low-speed bit if the device connected to port is a low=speed device (probably unlikely...)
if (pipe.device_speed() == Pipe::DeviceSpeed::LowSpeed) {
td->set_lowspeed();
}
td->set_active();
td->set_error_retry_counter(RETRY_COUNTER_RELOAD);
return td;
}
KResult UHCIController::create_chain(Pipe& pipe, PacketID direction, Ptr32<u8>& buffer_address, size_t max_size, size_t transfer_size, TransferDescriptor** td_chain, TransferDescriptor** last_td)
{
// We need to create `n` transfer descriptors based on the max
// size of each transfer (which we've learned from the device already by reading
// its device descriptor, or 8 bytes). Each TD then has its buffer pointer
// set to the initial buffer address + (max_size * index), where index is
// the ID of the TD in the chain.
size_t byte_count = 0;
TransferDescriptor* current_td = nullptr;
TransferDescriptor* prev_td = nullptr;
TransferDescriptor* first_td = nullptr;
// Keep creating transfer descriptors while we still have some data
while (byte_count < transfer_size) {
size_t packet_size = transfer_size - byte_count;
if (packet_size > max_size) {
packet_size = max_size;
}
current_td = create_transfer_descriptor(pipe, direction, packet_size);
if (current_td == nullptr) {
free_descriptor_chain(first_td);
return ENOMEM;
}
if (Checked<FlatPtr>::addition_would_overflow(reinterpret_cast<FlatPtr>(&*buffer_address), byte_count))
return EOVERFLOW;
auto buffer_pointer = Ptr32<u8>(buffer_address + byte_count);
current_td->set_buffer_address(buffer_pointer);
byte_count += packet_size;
if (prev_td != nullptr)
prev_td->insert_next_transfer_descriptor(current_td);
else
first_td = current_td;
prev_td = current_td;
}
*last_td = current_td;
*td_chain = first_td;
return KSuccess;
}
void UHCIController::free_descriptor_chain(TransferDescriptor* first_descriptor)
{
TransferDescriptor* descriptor = first_descriptor;
while (descriptor) {
descriptor->free();
descriptor = descriptor->next_td();
}
}
KResultOr<size_t> UHCIController::submit_control_transfer(Transfer& transfer)
{
Pipe& pipe = transfer.pipe(); // Short circuit the pipe related to this transfer
bool direction_in = (transfer.request().request_type & USB_DEVICE_REQUEST_DEVICE_TO_HOST) == USB_DEVICE_REQUEST_DEVICE_TO_HOST;
TransferDescriptor* setup_td = create_transfer_descriptor(pipe, PacketID::SETUP, sizeof(USBRequestData));
if (!setup_td)
return ENOMEM;
setup_td->set_buffer_address(transfer.buffer_physical().as_ptr());
// Create a new descriptor chain
TransferDescriptor* last_data_descriptor;
TransferDescriptor* data_descriptor_chain;
auto buffer_address = Ptr32<u8>(transfer.buffer_physical().as_ptr() + sizeof(USBRequestData));
auto transfer_chain_create_result = create_chain(pipe,
direction_in ? PacketID::IN : PacketID::OUT,
buffer_address,
pipe.max_packet_size(),
transfer.transfer_data_size(),
&data_descriptor_chain,
&last_data_descriptor);
if (transfer_chain_create_result != KSuccess)
return transfer_chain_create_result;
// Status TD always has toggle set to 1
pipe.set_toggle(true);
TransferDescriptor* status_td = create_transfer_descriptor(pipe, direction_in ? PacketID::OUT : PacketID::IN, 0);
if (!status_td) {
free_descriptor_chain(data_descriptor_chain);
return ENOMEM;
}
status_td->terminate();
// Link transfers together
if (data_descriptor_chain) {
setup_td->insert_next_transfer_descriptor(data_descriptor_chain);
last_data_descriptor->insert_next_transfer_descriptor(status_td);
} else {
setup_td->insert_next_transfer_descriptor(status_td);
}
// Cool, everything should be chained together now! Let's print it out
if constexpr (UHCI_VERBOSE_DEBUG) {
dbgln("Setup TD");
setup_td->print();
if (data_descriptor_chain) {
dbgln("Data TD");
data_descriptor_chain->print();
}
dbgln("Status TD");
status_td->print();
}
QueueHead* transfer_queue = allocate_queue_head();
if (!transfer_queue) {
free_descriptor_chain(data_descriptor_chain);
return 0;
}
transfer_queue->attach_transfer_descriptor_chain(setup_td);
transfer_queue->set_transfer(&transfer);
m_fullspeed_control_qh->attach_transfer_queue(*transfer_queue);
size_t transfer_size = 0;
while (!transfer.complete())
transfer_size = poll_transfer_queue(*transfer_queue);
free_descriptor_chain(transfer_queue->get_first_td());
transfer_queue->free();
return transfer_size;
}
size_t UHCIController::poll_transfer_queue(QueueHead& transfer_queue)
{
Transfer* transfer = transfer_queue.transfer();
TransferDescriptor* descriptor = transfer_queue.get_first_td();
bool transfer_still_in_progress = false;
size_t transfer_size = 0;
while (descriptor) {
u32 status = descriptor->status();
if (status & TransferDescriptor::StatusBits::Active) {
transfer_still_in_progress = true;
break;
}
if (status & TransferDescriptor::StatusBits::ErrorMask) {
transfer->set_complete();
transfer->set_error_occurred();
dbgln_if(UHCI_DEBUG, "UHCIController: Transfer failed! Reason: {:08x}", status);
return 0;
}
transfer_size += descriptor->actual_packet_length();
descriptor = descriptor->next_td();
}
if (!transfer_still_in_progress)
transfer->set_complete();
return transfer_size;
}
void UHCIController::spawn_port_proc()
{
RefPtr<Thread> usb_hotplug_thread;
Process::create_kernel_process(usb_hotplug_thread, "UHCIHotplug", [&] {
for (;;) {
for (int port = 0; port < UHCI_ROOT_PORT_COUNT; port++) {
u16 port_data = 0;
if (port == 1) {
// Let's see what's happening on port 1
// Current status
port_data = read_portsc1();
if (port_data & UHCI_PORTSC_CONNECT_STATUS_CHANGED) {
if (port_data & UHCI_PORTSC_CURRRENT_CONNECT_STATUS) {
dmesgln("UHCI: Device attach detected on Root Port 1!");
// Reset the port
port_data = read_portsc1();
write_portsc1(port_data | UHCI_PORTSC_PORT_RESET);
IO::delay(500);
write_portsc1(port_data & ~UHCI_PORTSC_PORT_RESET);
IO::delay(500);
write_portsc1(port_data & (~UHCI_PORTSC_PORT_ENABLE_CHANGED | ~UHCI_PORTSC_CONNECT_STATUS_CHANGED));
port_data = read_portsc1();
write_portsc1(port_data | UHCI_PORTSC_PORT_ENABLED);
dbgln("port should be enabled now: {:#04x}\n", read_portsc1());
USB::Device::DeviceSpeed speed = (port_data & UHCI_PORTSC_LOW_SPEED_DEVICE) ? USB::Device::DeviceSpeed::LowSpeed : USB::Device::DeviceSpeed::FullSpeed;
auto device = USB::Device::try_create(USB::Device::PortNumber::Port1, speed);
if (device.is_error())
dmesgln("UHCI: Device creation failed on port 1 ({})", device.error());
m_devices.at(0) = device.value();
VERIFY(s_procfs_usb_bus_folder);
s_procfs_usb_bus_folder->plug(device.value());
} else {
// FIXME: Clean up (and properly) the RefPtr to the device in m_devices
VERIFY(s_procfs_usb_bus_folder);
VERIFY(m_devices.at(0));
dmesgln("UHCI: Device detach detected on Root Port 1");
s_procfs_usb_bus_folder->unplug(*m_devices.at(0));
}
}
} else {
port_data = UHCIController::the().read_portsc2();
if (port_data & UHCI_PORTSC_CONNECT_STATUS_CHANGED) {
if (port_data & UHCI_PORTSC_CURRRENT_CONNECT_STATUS) {
dmesgln("UHCI: Device attach detected on Root Port 2");
// Reset the port
port_data = read_portsc2();
write_portsc2(port_data | UHCI_PORTSC_PORT_RESET);
for (size_t i = 0; i < 50000; ++i)
IO::in8(0x80);
write_portsc2(port_data & ~UHCI_PORTSC_PORT_RESET);
for (size_t i = 0; i < 100000; ++i)
IO::in8(0x80);
write_portsc2(port_data & (~UHCI_PORTSC_PORT_ENABLE_CHANGED | ~UHCI_PORTSC_CONNECT_STATUS_CHANGED));
port_data = read_portsc2();
write_portsc1(port_data | UHCI_PORTSC_PORT_ENABLED);
dbgln("port should be enabled now: {:#04x}\n", read_portsc1());
USB::Device::DeviceSpeed speed = (port_data & UHCI_PORTSC_LOW_SPEED_DEVICE) ? USB::Device::DeviceSpeed::LowSpeed : USB::Device::DeviceSpeed::FullSpeed;
auto device = USB::Device::try_create(USB::Device::PortNumber::Port2, speed);
if (device.is_error())
dmesgln("UHCI: Device creation failed on port 2 ({})", device.error());
m_devices.at(1) = device.value();
VERIFY(s_procfs_usb_bus_folder);
s_procfs_usb_bus_folder->plug(device.value());
} else {
// FIXME: Clean up (and properly) the RefPtr to the device in m_devices
VERIFY(s_procfs_usb_bus_folder);
VERIFY(m_devices.at(1));
dmesgln("UHCI: Device detach detected on Root Port 2");
s_procfs_usb_bus_folder->unplug(*m_devices.at(1));
}
}
}
}
(void)Thread::current()->sleep(Time::from_seconds(1));
}
});
}
bool UHCIController::handle_irq(const RegisterState&)
{
u32 status = read_usbsts();
// Shared IRQ. Not ours!
if (!status)
return false;
if constexpr (UHCI_DEBUG) {
dbgln("UHCI: Interrupt happened!");
dbgln("Value of USBSTS: {:#04x}", read_usbsts());
}
// Write back USBSTS to clear bits
write_usbsts(status);
return true;
}
}

View file

@ -1,100 +0,0 @@
/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020-2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Platform.h>
#include <AK/NonnullOwnPtr.h>
#include <Kernel/Bus/PCI/Device.h>
#include <Kernel/Devices/USB/UHCIDescriptorTypes.h>
#include <Kernel/Devices/USB/USBDevice.h>
#include <Kernel/Devices/USB/USBTransfer.h>
#include <Kernel/IO.h>
#include <Kernel/Process.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/ContiguousVMObject.h>
namespace Kernel::USB {
class UHCIController final : public PCI::Device {
public:
static void detect();
static UHCIController& the();
virtual ~UHCIController() override;
virtual const char* purpose() const override { return "UHCI"; }
void reset();
void stop();
void start();
void spawn_port_proc();
void do_debug_transfer();
KResultOr<size_t> submit_control_transfer(Transfer& transfer);
RefPtr<USB::Device> const get_device_at_port(USB::Device::PortNumber);
RefPtr<USB::Device> const get_device_from_address(u8 device_address);
private:
UHCIController(PCI::Address, PCI::ID);
u16 read_usbcmd() { return m_io_base.offset(0).in<u16>(); }
u16 read_usbsts() { return m_io_base.offset(0x2).in<u16>(); }
u16 read_usbintr() { return m_io_base.offset(0x4).in<u16>(); }
u16 read_frnum() { return m_io_base.offset(0x6).in<u16>(); }
u32 read_flbaseadd() { return m_io_base.offset(0x8).in<u32>(); }
u8 read_sofmod() { return m_io_base.offset(0xc).in<u8>(); }
u16 read_portsc1() { return m_io_base.offset(0x10).in<u16>(); }
u16 read_portsc2() { return m_io_base.offset(0x12).in<u16>(); }
void write_usbcmd(u16 value) { m_io_base.offset(0).out(value); }
void write_usbsts(u16 value) { m_io_base.offset(0x2).out(value); }
void write_usbintr(u16 value) { m_io_base.offset(0x4).out(value); }
void write_frnum(u16 value) { m_io_base.offset(0x6).out(value); }
void write_flbaseadd(u32 value) { m_io_base.offset(0x8).out(value); }
void write_sofmod(u8 value) { m_io_base.offset(0xc).out(value); }
void write_portsc1(u16 value) { m_io_base.offset(0x10).out(value); }
void write_portsc2(u16 value) { m_io_base.offset(0x12).out(value); }
virtual bool handle_irq(const RegisterState&) override;
void create_structures();
void setup_schedule();
size_t poll_transfer_queue(QueueHead& transfer_queue);
TransferDescriptor* create_transfer_descriptor(Pipe& pipe, PacketID direction, size_t data_len);
KResult create_chain(Pipe& pipe, PacketID direction, Ptr32<u8>& buffer_address, size_t max_size, size_t transfer_size, TransferDescriptor** td_chain, TransferDescriptor** last_td);
void free_descriptor_chain(TransferDescriptor* first_descriptor);
QueueHead* allocate_queue_head() const;
TransferDescriptor* allocate_transfer_descriptor() const;
private:
IOAddress m_io_base;
Vector<QueueHead*> m_free_qh_pool;
Vector<TransferDescriptor*> m_free_td_pool;
Vector<TransferDescriptor*> m_iso_td_list;
QueueHead* m_interrupt_transfer_queue;
QueueHead* m_lowspeed_control_qh;
QueueHead* m_fullspeed_control_qh;
QueueHead* m_bulk_qh;
QueueHead* m_dummy_qh; // Needed for PIIX4 hack
OwnPtr<Region> m_framelist;
OwnPtr<Region> m_qh_pool;
OwnPtr<Region> m_td_pool;
Array<RefPtr<USB::Device>, 2> m_devices; // Devices connected to the root ports (of which there are two)
};
}

View file

@ -1,367 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/OwnPtr.h>
#include <AK/Ptr32.h>
#include <AK/Types.h>
#include <Kernel/Devices/USB/USBTransfer.h>
namespace Kernel::USB {
enum class PacketID : u8 {
IN = 0x69,
OUT = 0xe1,
SETUP = 0x2d
};
// Transfer Descriptor register bit offsets/masks
constexpr u16 TD_CONTROL_STATUS_ACTLEN = 0x7ff;
constexpr u8 TD_CONTROL_STATUS_ACTIVE_SHIFT = 23;
constexpr u8 TD_CONTROL_STATUS_INT_ON_COMPLETE_SHIFT = 24;
constexpr u8 TD_CONTROL_STATUS_ISOCHRONOUS_SHIFT = 25;
constexpr u8 TD_CONTROL_STATUS_LS_DEVICE_SHIFT = 26;
constexpr u8 TD_CONTROL_STATUS_ERR_CTR_SHIFT_SHIFT = 27;
constexpr u8 TD_CONTROL_STATUS_SPD_SHIFT = 29;
constexpr u8 TD_TOKEN_PACKET_ID_SHIFT = 0;
constexpr u8 TD_TOKEN_DEVICE_ADDR_SHIFT = 8;
constexpr u8 TD_TOKEN_ENDPOINT_SHIFT = 15;
constexpr u8 TD_TOKEN_DATA_TOGGLE_SHIFT = 19;
constexpr u8 TD_TOKEN_MAXLEN_SHIFT = 21;
//
// Transfer Descriptor
//
// Describes a single transfer event from, or to the Universal Serial Bus.
// These are, generally, attached to Queue Heads, and then executed by the
// USB Host Controller.
// Must be 16-byte aligned
//
struct QueueHead;
struct alignas(16) TransferDescriptor final {
enum LinkPointerBits {
Terminate = 1,
QHSelect = 2,
DepthFlag = 4,
};
enum StatusBits {
Reserved = (1 << 16),
BitStuffError = (1 << 17),
CRCTimeoutError = (1 << 18),
NAKReceived = (1 << 19),
BabbleDetected = (1 << 20),
DataBufferError = (1 << 21),
Stalled = (1 << 22),
Active = (1 << 23),
ErrorMask = BitStuffError | CRCTimeoutError | NAKReceived | BabbleDetected | DataBufferError | Stalled
};
enum ControlBits {
InterruptOnComplete = (1 << 24),
IsochronousSelect = (1 << 25),
LowSpeedDevice = (1 << 26),
ShortPacketDetect = (1 << 29),
};
TransferDescriptor() = delete;
TransferDescriptor(u32 paddr)
: m_paddr(paddr)
{
}
~TransferDescriptor() = delete; // Prevent anything except placement new on this object
u32 link_ptr() const { return m_link_ptr; }
u32 paddr() const { return m_paddr; }
u32 status() const { return m_control_status; }
u32 token() const { return m_token; }
u32 buffer_ptr() const { return m_buffer_ptr; }
u16 actual_packet_length() const { return (m_control_status + 1) & 0x7ff; }
bool in_use() const { return m_in_use; }
bool stalled() const { return m_control_status & StatusBits::Stalled; }
bool last_in_chain() const { return m_link_ptr & LinkPointerBits::Terminate; }
bool active() const { return m_control_status & StatusBits::Active; }
void set_active()
{
u32 ctrl = m_control_status;
ctrl |= StatusBits::Active;
m_control_status = ctrl;
}
void set_isochronous()
{
u32 ctrl = m_control_status;
ctrl |= ControlBits::IsochronousSelect;
m_control_status = ctrl;
}
void set_interrupt_on_complete()
{
u32 ctrl = m_control_status;
ctrl |= ControlBits::InterruptOnComplete;
m_control_status = ctrl;
}
void set_lowspeed()
{
u32 ctrl = m_control_status;
ctrl |= ControlBits::LowSpeedDevice;
m_control_status = ctrl;
}
void set_error_retry_counter(u8 num_retries)
{
VERIFY(num_retries <= 3);
u32 ctrl = m_control_status;
ctrl |= (num_retries << 27);
m_control_status = ctrl;
}
void set_short_packet_detect()
{
u32 ctrl = m_control_status;
ctrl |= ControlBits::ShortPacketDetect;
m_control_status = ctrl;
}
void set_control_status(u32 control_status) { m_control_status = control_status; }
void set_in_use(bool in_use) { m_in_use = in_use; }
void set_max_len(u16 max_len)
{
VERIFY(max_len < 0x500 || max_len == 0x7ff);
m_token |= (max_len << 21);
}
void set_device_endpoint(u8 endpoint)
{
VERIFY(endpoint <= 0xf);
m_token |= (endpoint << 18);
}
void set_device_address(u8 address)
{
VERIFY(address <= 0x7f);
m_token |= (address << 8);
}
void set_data_toggle(bool toggle)
{
m_token |= ((toggle ? (1 << 19) : 0));
}
void set_packet_id(PacketID pid) { m_token |= static_cast<u32>(pid); }
void link_queue_head(u32 qh_paddr)
{
m_link_ptr = qh_paddr;
m_link_ptr |= LinkPointerBits::QHSelect;
}
void print()
{
dbgln("UHCI: TD({:#04x}) @ {:#04x}: link_ptr={:#04x}, status={:#04x}, token={:#04x}, buffer_ptr={:#04x}", this, m_paddr, m_link_ptr, (u32)m_control_status, m_token, m_buffer_ptr);
// Now let's print the flags!
dbgln("UHCI: TD({:#04x}) @ {:#04x}: link_ptr={}{}{}, status={}{}{}{}{}{}{}",
this,
m_paddr,
(last_in_chain()) ? "T " : "",
(m_link_ptr & static_cast<u32>(LinkPointerBits::QHSelect)) ? "QH " : "",
(m_link_ptr & static_cast<u32>(LinkPointerBits::DepthFlag)) ? "Vf " : "",
(m_control_status & static_cast<u32>(StatusBits::BitStuffError)) ? "BITSTUFF " : "",
(m_control_status & static_cast<u32>(StatusBits::CRCTimeoutError)) ? "CRCTIMEOUT " : "",
(m_control_status & static_cast<u32>(StatusBits::NAKReceived)) ? "NAK " : "",
(m_control_status & static_cast<u32>(StatusBits::BabbleDetected)) ? "BABBLE " : "",
(m_control_status & static_cast<u32>(StatusBits::DataBufferError)) ? "DATAERR " : "",
(stalled()) ? "STALL " : "",
(active()) ? "ACTIVE " : "");
}
// FIXME: For the love of God, use AK SMART POINTERS PLEASE!!
TransferDescriptor* next_td() { return m_next_td; }
const TransferDescriptor* next_td() const { return m_next_td; }
void set_next_td(TransferDescriptor* td) { m_next_td = td; }
TransferDescriptor* prev_td() { return m_prev_td; }
const TransferDescriptor* prev_td() const { return m_prev_td; }
void set_previous_td(TransferDescriptor* td) { m_prev_td = td; }
void insert_next_transfer_descriptor(TransferDescriptor* td)
{
m_link_ptr = td->paddr();
td->set_previous_td(this);
set_next_td(td);
// Let's set some bits for the link ptr
m_link_ptr |= static_cast<u32>(LinkPointerBits::DepthFlag);
}
void terminate() { m_link_ptr |= static_cast<u32>(LinkPointerBits::Terminate); }
void set_buffer_address(Ptr32<u8> buffer)
{
u8* buffer_address = &*buffer;
m_buffer_ptr = reinterpret_cast<uintptr_t>(buffer_address);
}
// DEBUG FUNCTIONS!
void set_token(u32 token)
{
m_token = token;
}
void set_status(u32 status)
{
m_control_status = status;
}
void free()
{
m_link_ptr = 0;
m_control_status = 0;
m_token = 0;
m_in_use = false;
}
private:
u32 m_link_ptr; // Points to another Queue Head or Transfer Descriptor
volatile u32 m_control_status; // Control and status bits
u32 m_token; // Contains all information required to fill in a USB Start Token
u32 m_buffer_ptr; // Points to a data buffer for this transaction (i.e what we want to send or recv)
// These values will be ignored by the controller, but we can use them for configuration/bookkeeping
u32 m_paddr; // Physical address where this TransferDescriptor is located
Ptr32<TransferDescriptor> m_next_td { nullptr }; // Pointer to first TD
Ptr32<TransferDescriptor> m_prev_td { nullptr }; // Pointer to first TD
bool m_in_use; // Has this TD been allocated (and therefore in use)?
};
static_assert(sizeof(TransferDescriptor) == 32); // Transfer Descriptor is always 8 Dwords
//
// Queue Head
//
// Description here please!
//
struct alignas(16) QueueHead {
enum class LinkPointerBits : u32 {
Terminate = 1,
QHSelect = 2,
};
QueueHead() = delete;
QueueHead(u32 paddr)
: m_paddr(paddr)
{
}
~QueueHead() = delete; // Prevent anything except placement new on this object
u32 link_ptr() const { return m_link_ptr; }
u32 element_link_ptr() const { return m_element_link_ptr; }
u32 paddr() const { return m_paddr; }
bool in_use() const { return m_in_use; }
void set_in_use(bool in_use) { m_in_use = in_use; }
void set_link_ptr(u32 val) { m_link_ptr = val; }
// FIXME: For the love of God, use AK SMART POINTERS PLEASE!!
QueueHead* next_qh() { return m_next_qh; }
const QueueHead* next_qh() const { return m_next_qh; }
void set_next_qh(QueueHead* qh) { m_next_qh = qh; }
QueueHead* prev_qh() { return m_prev_qh; }
const QueueHead* prev_qh() const { return m_prev_qh; }
void set_previous_qh(QueueHead* qh)
{
m_prev_qh = qh;
}
void link_next_queue_head(QueueHead* qh)
{
m_link_ptr = qh->paddr();
m_link_ptr |= static_cast<u32>(LinkPointerBits::QHSelect);
}
void attach_transfer_queue(QueueHead& qh)
{
m_element_link_ptr = qh.paddr();
m_element_link_ptr = m_element_link_ptr | static_cast<u32>(LinkPointerBits::QHSelect);
}
// FIXME: Find out best way to walk queue and free everything
void free_transfer_queue([[maybe_unused]] QueueHead* qh)
{
TODO();
}
void terminate_with_stray_descriptor(TransferDescriptor* td)
{
m_link_ptr = td->paddr();
m_link_ptr |= static_cast<u32>(LinkPointerBits::Terminate);
}
// TODO: Should we pass in an array or vector of TDs instead????
void attach_transfer_descriptor_chain(TransferDescriptor* td)
{
m_first_td = td;
m_element_link_ptr = td->paddr();
}
TransferDescriptor* get_first_td()
{
return m_first_td;
}
void terminate() { m_link_ptr |= static_cast<u32>(LinkPointerBits::Terminate); }
void terminate_element_link_ptr()
{
m_element_link_ptr = static_cast<u32>(LinkPointerBits::Terminate);
}
void set_transfer(Transfer* transfer)
{
m_transfer = transfer;
}
Transfer* transfer()
{
return m_transfer;
}
void print()
{
dbgln("UHCI: QH({:#04x}) @ {:#04x}: link_ptr={:#04x}, element_link_ptr={:#04x}", this, m_paddr, m_link_ptr, (FlatPtr)m_element_link_ptr);
}
void free()
{
m_link_ptr = 0;
m_element_link_ptr = 0;
m_first_td = nullptr;
m_transfer = nullptr;
m_in_use = false;
}
private:
u32 m_link_ptr { 0 }; // Pointer to the next horizontal object that the controller will execute after this one
volatile u32 m_element_link_ptr { 0 }; // Pointer to the first data object in the queue (can be modified by hw)
// These values will be ignored by the controller, but we can use them for configuration/bookkeeping
// Any addresses besides `paddr` are assumed virtual and can be dereferenced
u32 m_paddr { 0 }; // Physical address where this QueueHead is located
Ptr32<QueueHead> m_next_qh { nullptr }; // Next QH
Ptr32<QueueHead> m_prev_qh { nullptr }; // Previous QH
Ptr32<TransferDescriptor> m_first_td { nullptr }; // Pointer to first TD
Ptr32<Transfer> m_transfer { nullptr }; // Pointer to transfer linked to this queue head
bool m_in_use { false }; // Is this QH currently in use?
};
static_assert(sizeof(QueueHead) == 32); // Queue Head is always 8 Dwords
}

View file

@ -1,104 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Types.h>
namespace Kernel::USB {
struct [[gnu::packed]] USBDescriptorCommon {
u8 length;
u8 descriptor_type;
};
//
// Device Descriptor
// =================
//
// This descriptor type (stored on the device), represents the device, and gives
// information related to it, such as the USB specification it complies to,
// as well as the vendor and product ID of the device.
//
// https://beyondlogic.org/usbnutshell/usb5.shtml#DeviceDescriptors
struct [[gnu::packed]] USBDeviceDescriptor {
USBDescriptorCommon descriptor_header;
u16 usb_spec_compliance_bcd;
u8 device_class;
u8 device_sub_class;
u8 device_protocol;
u8 max_packet_size;
u16 vendor_id;
u16 product_id;
u16 device_release_bcd;
u8 manufacturer_id_descriptor_index;
u8 product_string_descriptor_index;
u8 serial_number_descriptor_index;
u8 num_configurations;
};
//
// Configuration Descriptor
// ========================
//
// A USB device can have multiple configurations, which tells us about how the
// device is physically configured (e.g how it's powered, max power consumption etc).
//
struct [[gnu::packed]] USBConfigurationDescriptor {
USBDescriptorCommon descriptor_header;
u16 total_length;
u8 number_of_interfaces;
u8 configuration_value;
u8 configuration_string_descriptor_index;
u8 attributes_bitmap;
u8 max_power_in_ma;
};
//
// Interface Descriptor
// ====================
//
// An interface descriptor describes to us one or more endpoints, grouped
// together to define a singular function of a device.
// As an example, a USB webcam might have two interface descriptors; one
// for the camera, and one for the microphone.
//
struct [[gnu::packed]] USBInterfaceDescriptor {
USBDescriptorCommon descriptor_header;
u8 interface_id;
u8 alternate_setting;
u8 number_of_endpoints;
u8 interface_class_code;
u8 interface_sub_class_code;
u8 interface_protocol;
u8 interface_string_descriptor_index;
};
//
// Endpoint Descriptor
// ===================
//
// The lowest leaf in the configuration tree. And endpoint descriptor describes
// the physical transfer properties of the endpoint (that isn't endpoint0).
// The description given by this structure is used by a pipe to create a
// "connection" from the host to the device.
// https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-endpoints-and-their-pipes
struct [[gnu::packed]] USBEndpointDescriptor {
USBDescriptorCommon descriptor_header;
u8 endpoint_address;
u8 endpoint_attributes_bitmap;
u16 max_packet_size;
u8 poll_interval_in_frames;
};
static constexpr u8 DESCRIPTOR_TYPE_DEVICE = 0x01;
static constexpr u8 DESCRIPTOR_TYPE_CONFIGURATION = 0x02;
static constexpr u8 DESCRIPTOR_TYPE_STRING = 0x03;
static constexpr u8 DESCRIPTOR_TYPE_INTERFACE = 0x04;
static constexpr u8 DESCRIPTOR_TYPE_ENDPOINT = 0x05;
static constexpr u8 DESCRIPTOR_TYPE_DEVICE_QUALIFIER = 0x06;
}

View file

@ -1,105 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/OwnPtr.h>
#include <AK/Types.h>
#include <AK/Vector.h>
#include <Kernel/Devices/USB/UHCIController.h>
#include <Kernel/Devices/USB/USBDescriptors.h>
#include <Kernel/Devices/USB/USBDevice.h>
#include <Kernel/Devices/USB/USBRequest.h>
static u32 s_next_usb_address = 1; // Next address we hand out to a device once it's plugged into the machine
namespace Kernel::USB {
KResultOr<NonnullRefPtr<Device>> Device::try_create(PortNumber port, DeviceSpeed speed)
{
auto pipe_or_error = Pipe::try_create_pipe(Pipe::Type::Control, Pipe::Direction::Bidirectional, 0, 8, 0);
if (pipe_or_error.is_error())
return pipe_or_error.error();
auto device = AK::try_create<Device>(port, speed, pipe_or_error.release_value());
if (!device)
return ENOMEM;
auto enumerate_result = device->enumerate();
if (enumerate_result.is_error())
return enumerate_result;
return device.release_nonnull();
}
Device::Device(PortNumber port, DeviceSpeed speed, NonnullOwnPtr<Pipe> default_pipe)
: m_device_port(port)
, m_device_speed(speed)
, m_address(0)
, m_default_pipe(move(default_pipe))
{
}
KResult Device::enumerate()
{
USBDeviceDescriptor dev_descriptor {};
// FIXME: 0x100 is a magic number for now, as I'm not quite sure how these are constructed....
// Send 8-bytes to get at least the `max_packet_size` from the device
auto transfer_length_or_error = m_default_pipe->control_transfer(USB_DEVICE_REQUEST_DEVICE_TO_HOST, USB_REQUEST_GET_DESCRIPTOR, 0x100, 0, 8, &dev_descriptor);
if (transfer_length_or_error.is_error())
return transfer_length_or_error.error();
auto transfer_length = transfer_length_or_error.release_value();
// FIXME: This shouldn't crash! Do some correct error handling on me please!
VERIFY(transfer_length > 0);
// Ensure that this is actually a valid device descriptor...
VERIFY(dev_descriptor.descriptor_header.descriptor_type == DESCRIPTOR_TYPE_DEVICE);
m_default_pipe->set_max_packet_size(dev_descriptor.max_packet_size);
transfer_length_or_error = m_default_pipe->control_transfer(USB_DEVICE_REQUEST_DEVICE_TO_HOST, USB_REQUEST_GET_DESCRIPTOR, 0x100, 0, sizeof(USBDeviceDescriptor), &dev_descriptor);
if (transfer_length_or_error.is_error())
return transfer_length_or_error.error();
transfer_length = transfer_length_or_error.release_value();
// FIXME: This shouldn't crash! Do some correct error handling on me please!
VERIFY(transfer_length > 0);
// Ensure that this is actually a valid device descriptor...
VERIFY(dev_descriptor.descriptor_header.descriptor_type == DESCRIPTOR_TYPE_DEVICE);
if constexpr (USB_DEBUG) {
dbgln("USB Device Descriptor for {:04x}:{:04x}", dev_descriptor.vendor_id, dev_descriptor.product_id);
dbgln("Device Class: {:02x}", dev_descriptor.device_class);
dbgln("Device Sub-Class: {:02x}", dev_descriptor.device_sub_class);
dbgln("Device Protocol: {:02x}", dev_descriptor.device_protocol);
dbgln("Max Packet Size: {:02x} bytes", dev_descriptor.max_packet_size);
dbgln("Number of configurations: {:02x}", dev_descriptor.num_configurations);
}
// Attempt to set devices address on the bus
transfer_length_or_error = m_default_pipe->control_transfer(USB_DEVICE_REQUEST_HOST_TO_DEVICE, USB_REQUEST_SET_ADDRESS, s_next_usb_address, 0, 0, nullptr);
if (transfer_length_or_error.is_error())
return transfer_length_or_error.error();
transfer_length = transfer_length_or_error.release_value();
VERIFY(transfer_length > 0);
m_address = s_next_usb_address++;
memcpy(&m_device_descriptor, &dev_descriptor, sizeof(USBDeviceDescriptor));
return KSuccess;
}
Device::~Device()
{
}
}

View file

@ -1,59 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/OwnPtr.h>
#include <AK/Types.h>
#include <Kernel/Devices/USB/USBPipe.h>
namespace Kernel::USB {
//
// Some nice info from FTDI on device enumeration and how some of this
// glues together:
//
// https://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_113_Simplified%20Description%20of%20USB%20Device%20Enumeration.pdf
class Device : public RefCounted<Device> {
public:
enum class PortNumber : u8 {
Port1 = 0,
Port2
};
enum class DeviceSpeed : u8 {
FullSpeed = 0,
LowSpeed
};
public:
static KResultOr<NonnullRefPtr<Device>> try_create(PortNumber, DeviceSpeed);
Device(PortNumber, DeviceSpeed, NonnullOwnPtr<Pipe> default_pipe);
~Device();
KResult enumerate();
PortNumber port() const { return m_device_port; }
DeviceSpeed speed() const { return m_device_speed; }
u8 address() const { return m_address; }
const USBDeviceDescriptor& device_descriptor() const { return m_device_descriptor; }
private:
PortNumber m_device_port; // What port is this device attached to
DeviceSpeed m_device_speed; // What speed is this device running at
u8 m_address { 0 }; // USB address assigned to this device
// Device description
u16 m_vendor_id { 0 }; // This device's vendor ID assigned by the USB group
u16 m_product_id { 0 }; // This device's product ID assigned by the USB group
USBDeviceDescriptor m_device_descriptor; // Device Descriptor obtained from USB Device
NonnullOwnPtr<Pipe> m_default_pipe; // Default communication pipe (endpoint0) used during enumeration
};
}

View file

@ -1,60 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <Kernel/Devices/USB/USBDescriptors.h>
#include <Kernel/Devices/USB/USBPipe.h>
namespace Kernel::USB {
//
// An endpoint is the "end point" of communication of a USB device. That is, data is read from and written
// to an endpoint via a USB pipe. As an example, during device enumeration (where we assign an address to the
// device), we communicate with the device over the default endpoint, endpoint0, which all devices _must_
// contain to be compliant with the USB specification.
//
// And endpoint describes characteristics about the transfer between the host and the device, such as:
// - The endpoint number
// - Max packet size of send/recv of the endpoint
// - Transfer type (bulk, interrupt, isochronous etc)
//
// Take for example a USB multifunction device, such as a keyboard/mouse combination. The mouse
// may need to be polled every n milliseconds, meaning the transfer may be isochronous (streamed),
// while the keyboard part would only generate data once we push a key (hence an interrupt transfer).
// Each of these data sources would be a _different_ endpoint on the device that we read from.
class USBEndpoint {
static constexpr u8 ENDPOINT_ADDRESS_NUMBER_MASK = 0x0f;
static constexpr u8 ENDPOINT_ADDRESS_DIRECTION_MASK = 0x80;
static constexpr u8 ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_MASK = 0x03;
static constexpr u8 ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_CONTROL = 0x00;
static constexpr u8 ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_ISOCHRONOUS = 0x01;
static constexpr u8 ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_BULK = 0x02;
static constexpr u8 ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_INTERRUPT = 0x03;
static constexpr u8 ENDPOINT_ATTRIBUTES_ISO_MODE_SYNC_TYPE = 0x0c;
static constexpr u8 ENDPOINT_ATTRIBUTES_ISO_MODE_USAGE_TYPE = 0x30;
public:
const USBEndpointDescriptor& descriptor() const { return m_descriptor; }
bool is_control() const { return (m_descriptor.endpoint_attributes_bitmap & ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_MASK) == ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_CONTROL; }
bool is_isochronous() const { return (m_descriptor.endpoint_attributes_bitmap & ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_MASK) == ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_ISOCHRONOUS; }
bool is_bulk() const { return (m_descriptor.endpoint_attributes_bitmap & ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_MASK) == ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_BULK; }
bool is_interrupt() const { return (m_descriptor.endpoint_attributes_bitmap & ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_MASK) == ENDPOINT_ATTRIBUTES_TRANSFER_TYPE_INTERRUPT; }
u16 max_packet_size() const { return m_descriptor.max_packet_size; }
u8 polling_interval() const { return m_descriptor.poll_interval_in_frames; }
private:
USBEndpoint(/* TODO */);
USBEndpointDescriptor m_descriptor;
USBPipe m_pipe;
};
}

View file

@ -1,84 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Devices/USB/PacketTypes.h>
#include <Kernel/Devices/USB/UHCIController.h>
#include <Kernel/Devices/USB/USBPipe.h>
#include <Kernel/Devices/USB/USBTransfer.h>
namespace Kernel::USB {
KResultOr<NonnullOwnPtr<Pipe>> Pipe::try_create_pipe(Type type, Direction direction, u8 endpoint_address, u16 max_packet_size, i8 device_address, u8 poll_interval)
{
auto pipe = adopt_own_if_nonnull(new (nothrow) Pipe(type, direction, endpoint_address, max_packet_size, device_address, poll_interval));
if (!pipe)
return ENOMEM;
return pipe.release_nonnull();
}
Pipe::Pipe(Type type, Pipe::Direction direction, u16 max_packet_size)
: m_type(type)
, m_direction(direction)
, m_endpoint_address(0)
, m_max_packet_size(max_packet_size)
, m_poll_interval(0)
, m_data_toggle(false)
{
}
Pipe::Pipe(Type type, Direction direction, USBEndpointDescriptor& endpoint [[maybe_unused]])
: m_type(type)
, m_direction(direction)
{
// TODO: decode endpoint structure
}
Pipe::Pipe(Type type, Direction direction, u8 endpoint_address, u16 max_packet_size, u8 poll_interval, i8 device_address)
: m_type(type)
, m_direction(direction)
, m_device_address(device_address)
, m_endpoint_address(endpoint_address)
, m_max_packet_size(max_packet_size)
, m_poll_interval(poll_interval)
, m_data_toggle(false)
{
}
KResultOr<size_t> Pipe::control_transfer(u8 request_type, u8 request, u16 value, u16 index, u16 length, void* data)
{
USBRequestData usb_request;
usb_request.request_type = request_type;
usb_request.request = request;
usb_request.value = value;
usb_request.index = index;
usb_request.length = length;
auto transfer = Transfer::try_create(*this, length);
if (!transfer)
return ENOMEM;
transfer->set_setup_packet(usb_request);
dbgln_if(USB_DEBUG, "Pipe: Transfer allocated @ {:08x}", transfer->buffer_physical());
auto transfer_len_or_error = UHCIController::the().submit_control_transfer(*transfer);
if (transfer_len_or_error.is_error())
return transfer_len_or_error.error();
auto transfer_length = transfer_len_or_error.release_value();
// TODO: Check transfer for completion and copy data from transfer buffer into data
if (length > 0)
memcpy(reinterpret_cast<u8*>(data), transfer->buffer().as_ptr() + sizeof(USBRequestData), length);
dbgln_if(USB_DEBUG, "Pipe: Control Transfer complete!");
return transfer_length;
}
}

View file

@ -1,77 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/OwnPtr.h>
#include <AK/Types.h>
#include <Kernel/Devices/USB/USBDescriptors.h>
#include <Kernel/VM/Region.h>
namespace Kernel::USB {
//
// A pipe is the logical connection between a memory buffer on the PC (host) and
// an endpoint on the device. In this implementation, the data buffer the pipe connects
// to is the physical buffer created when a Transfer is allocated.
//
class Pipe {
public:
enum class Type : u8 {
Control = 0,
Isochronous = 1,
Bulk = 2,
Interrupt = 3
};
enum class Direction : u8 {
Out = 0,
In = 1,
Bidirectional = 2
};
enum class DeviceSpeed : u8 {
LowSpeed,
FullSpeed
};
public:
static KResultOr<NonnullOwnPtr<Pipe>> try_create_pipe(Type type, Direction direction, u8 endpoint_address, u16 max_packet_size, i8 device_address, u8 poll_interval = 0);
Type type() const { return m_type; }
Direction direction() const { return m_direction; }
DeviceSpeed device_speed() const { return m_speed; }
i8 device_address() const { return m_device_address; }
u8 endpoint_address() const { return m_endpoint_address; }
u16 max_packet_size() const { return m_max_packet_size; }
u8 poll_interval() const { return m_poll_interval; }
bool data_toggle() const { return m_data_toggle; }
void set_max_packet_size(u16 max_size) { m_max_packet_size = max_size; }
void set_toggle(bool toggle) { m_data_toggle = toggle; }
void set_device_address(i8 addr) { m_device_address = addr; }
KResultOr<size_t> control_transfer(u8 request_type, u8 request, u16 value, u16 index, u16 length, void* data);
Pipe(Type type, Direction direction, u16 max_packet_size);
Pipe(Type type, Direction direction, USBEndpointDescriptor& endpoint);
Pipe(Type type, Direction direction, u8 endpoint_address, u16 max_packet_size, u8 poll_interval, i8 device_address);
private:
friend class Device;
Type m_type;
Direction m_direction;
DeviceSpeed m_speed;
i8 m_device_address { 0 }; // Device address of this pipe
u8 m_endpoint_address { 0 }; // Corresponding endpoint address for this pipe
u16 m_max_packet_size { 0 }; // Max packet size for this pipe
u8 m_poll_interval { 0 }; // Polling interval (in frames)
bool m_data_toggle { false }; // Data toggle for stuffing bit
};
}

View file

@ -1,37 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Types.h>
//
// USB Request directions
//
// As per Section 9.4 of the USB Specification, it is noted that Requeset Types that
// Device to Host have bit 7 of `bmRequestType` set. These are here as a convenience,
// as we construct the request at the call-site to make reading transfers easier.
//
static constexpr u8 USB_DEVICE_REQUEST_DEVICE_TO_HOST = 0x80;
static constexpr u8 USB_DEVICE_REQUEST_HOST_TO_DEVICE = 0x00;
static constexpr u8 USB_INTERFACE_REQUEST_DEVICE_TO_HOST = 0x81;
static constexpr u8 USB_INTERFACE_REQUEST_HOST_TO_DEVICE = 0x01;
static constexpr u8 USB_ENDPOINT_REQUEST_DEVICE_TO_HOST = 0x82;
static constexpr u8 USB_ENDPOINT_REQUEST_HOST_TO_DEVICE = 0x02;
//
// Standard USB request types
//
// These are found in Section 9.4 of the USB Spec
//
static constexpr u8 USB_REQUEST_GET_STATUS = 0x00;
static constexpr u8 USB_REQUEST_CLEAR_FEATURE = 0x01;
static constexpr u8 USB_REQUEST_SET_FEATURE = 0x03;
static constexpr u8 USB_REQUEST_SET_ADDRESS = 0x05;
static constexpr u8 USB_REQUEST_GET_DESCRIPTOR = 0x06;
static constexpr u8 USB_REQUEST_SET_DESCRIPTOR = 0x07;
static constexpr u8 USB_REQUEST_GET_CONFIGURATION = 0x08;
static constexpr u8 USB_REQUEST_SET_CONFIGURATION = 0x09;

View file

@ -1,51 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Devices/USB/USBTransfer.h>
#include <Kernel/VM/MemoryManager.h>
namespace Kernel::USB {
RefPtr<Transfer> Transfer::try_create(Pipe& pipe, u16 len)
{
auto vmobject = ContiguousVMObject::create_with_size(PAGE_SIZE);
if (!vmobject)
return nullptr;
return AK::try_create<Transfer>(pipe, len, *vmobject);
}
Transfer::Transfer(Pipe& pipe, u16 len, ContiguousVMObject& vmobject)
: m_pipe(pipe)
, m_transfer_data_size(len)
{
// Initialize data buffer for transfer
// This will definitely need to be refactored in the future, I doubt this will scale well...
m_data_buffer = MemoryManager::the().allocate_kernel_region_with_vmobject(vmobject, PAGE_SIZE, "USB Transfer Buffer", Region::Access::Read | Region::Access::Write);
}
Transfer::~Transfer()
{
}
void Transfer::set_setup_packet(const USBRequestData& request)
{
// Kind of a nasty hack... Because the kernel isn't in the business
// of handing out physical pointers that we can directly write to,
// we set the address of the setup packet to be the first 8 bytes of
// the data buffer, which we then set to the physical address.
auto* request_data = reinterpret_cast<USBRequestData*>(buffer().as_ptr());
request_data->request_type = request.request_type;
request_data->request = request.request;
request_data->value = request.value;
request_data->index = request.index;
request_data->length = request.length;
m_request = request;
}
}

View file

@ -1,51 +0,0 @@
/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/OwnPtr.h>
#include <AK/RefPtr.h>
#include <Kernel/Devices/USB/PacketTypes.h>
#include <Kernel/Devices/USB/USBPipe.h>
#include <Kernel/VM/ContiguousVMObject.h>
#include <Kernel/VM/PhysicalPage.h>
#include <Kernel/VM/Region.h>
// TODO: Callback stuff in this class please!
namespace Kernel::USB {
class Transfer : public RefCounted<Transfer> {
public:
static RefPtr<Transfer> try_create(Pipe& pipe, u16 len);
public:
Transfer() = delete;
Transfer(Pipe& pipe, u16 len, ContiguousVMObject&);
~Transfer();
void set_setup_packet(const USBRequestData& request);
void set_complete() { m_complete = true; }
void set_error_occurred() { m_error_occurred = true; }
// `const` here makes sure we don't blow up by writing to a physical address
const USBRequestData& request() const { return m_request; }
const Pipe& pipe() const { return m_pipe; }
Pipe& pipe() { return m_pipe; }
VirtualAddress buffer() const { return m_data_buffer->vaddr(); }
PhysicalAddress buffer_physical() const { return m_data_buffer->physical_page(0)->paddr(); }
u16 transfer_data_size() const { return m_transfer_data_size; }
bool complete() const { return m_complete; }
bool error_occurred() const { return m_error_occurred; }
private:
Pipe& m_pipe; // Pipe that initiated this transfer
USBRequestData m_request; // USB request
OwnPtr<Region> m_data_buffer; // DMA Data buffer for transaction
u16 m_transfer_data_size { 0 }; // Size of the transfer's data stage
bool m_complete { false }; // Has this transfer been completed?
bool m_error_occurred { false }; // Did an error occur during this transfer?
};
}