1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-26 03:17:34 +00:00

LibAudio: Add a FLAC encoder

This encoder can handle all integer formats and sample rates, though
only two channels well. It uses fixed LPC and performs a
close-to-optimal parameter search on the LPC order and residual Rice
parameter, leading to decent compression already.
This commit is contained in:
kleines Filmröllchen 2023-07-05 00:10:35 +02:00 committed by Andrew Kaster
parent 252b1328ea
commit 625aac2367
7 changed files with 795 additions and 0 deletions

View file

@ -0,0 +1,624 @@
/*
* Copyright (c) 2023, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "FlacWriter.h"
#include <AK/BitStream.h>
#include <AK/Endian.h>
#include <AK/IntegralMath.h>
#include <AK/MemoryStream.h>
#include <LibCrypto/Checksum/ChecksummingStream.h>
namespace Audio {
ErrorOr<NonnullOwnPtr<FlacWriter>> FlacWriter::create(NonnullOwnPtr<SeekableStream> stream, u32 sample_rate, u8 num_channels, u16 bits_per_sample)
{
auto writer = TRY(AK::adopt_nonnull_own_or_enomem(new (nothrow) FlacWriter(move(stream))));
TRY(writer->set_bits_per_sample(bits_per_sample));
TRY(writer->set_sample_rate(sample_rate));
TRY(writer->set_num_channels(num_channels));
return writer;
}
FlacWriter::FlacWriter(NonnullOwnPtr<SeekableStream> stream)
: m_stream(move(stream))
{
}
FlacWriter::~FlacWriter()
{
if (m_state != WriteState::FullyFinalized)
(void)finalize();
}
ErrorOr<void> FlacWriter::finalize()
{
if (m_state == WriteState::FullyFinalized)
return Error::from_string_view("File is already finalized"sv);
// TODO: Write missing sample data instead of discarding it.
if (m_state == WriteState::HeaderUnwritten)
TRY(finalize_header_format());
{
// 1 byte metadata block header + 3 bytes size + 2*2 bytes min/max block size
TRY(m_stream->seek(m_streaminfo_start_index + 8, AK::SeekMode::SetPosition));
BigEndianOutputBitStream bit_stream { MaybeOwned<Stream> { *m_stream } };
TRY(bit_stream.write_bits(m_min_frame_size, 24));
TRY(bit_stream.write_bits(m_max_frame_size, 24));
TRY(bit_stream.write_bits(m_sample_rate, 20));
TRY(bit_stream.write_bits(m_num_channels - 1u, 3));
TRY(bit_stream.write_bits(m_bits_per_sample - 1u, 5));
TRY(bit_stream.write_bits(m_sample_count, 36));
TRY(bit_stream.align_to_byte_boundary());
}
// TODO: Write the audio data MD5 to the header.
m_stream->close();
m_state = WriteState::FullyFinalized;
return {};
}
ErrorOr<void> FlacWriter::finalize_header_format()
{
if (m_state != WriteState::HeaderUnwritten)
return Error::from_string_view("Header format is already finalized"sv);
TRY(write_header());
m_state = WriteState::FormatFinalized;
return {};
}
ErrorOr<void> FlacWriter::set_num_channels(u8 num_channels)
{
if (m_state != WriteState::HeaderUnwritten)
return Error::from_string_view("Header format is already finalized"sv);
if (num_channels > 8)
return Error::from_string_view("FLAC doesn't support more than 8 channels"sv);
m_num_channels = num_channels;
return {};
}
ErrorOr<void> FlacWriter::set_sample_rate(u32 sample_rate)
{
if (m_state != WriteState::HeaderUnwritten)
return Error::from_string_view("Header format is already finalized"sv);
m_sample_rate = sample_rate;
return {};
}
ErrorOr<void> FlacWriter::set_bits_per_sample(u16 bits_per_sample)
{
if (m_state != WriteState::HeaderUnwritten)
return Error::from_string_view("Header format is already finalized"sv);
if (bits_per_sample < 8 || bits_per_sample > 32)
return Error::from_string_view("FLAC only supports bits per sample between 8 and 32"sv);
m_bits_per_sample = bits_per_sample;
return {};
}
ErrorOr<void> FlacWriter::write_header()
{
TRY(m_stream->write_until_depleted(flac_magic.bytes()));
m_streaminfo_start_index = TRY(m_stream->tell());
ByteBuffer data;
// STREAMINFO is always exactly 34 bytes long.
TRY(data.try_resize(34));
BigEndianOutputBitStream header_stream { TRY(try_make<FixedMemoryStream>(data.bytes())) };
// Duplication on purpose:
// Minimum frame size.
TRY(header_stream.write_bits(block_size, 16));
// Maximum frame size.
TRY(header_stream.write_bits(block_size, 16));
// Leave the frame sizes as unknown for now.
TRY(header_stream.write_bits(0u, 24));
TRY(header_stream.write_bits(0u, 24));
TRY(header_stream.write_bits(m_sample_rate, 20));
TRY(header_stream.write_bits(m_num_channels - 1u, 3));
TRY(header_stream.write_bits(m_bits_per_sample - 1u, 5));
// Leave the sample count as unknown for now.
TRY(header_stream.write_bits(0u, 36));
// TODO: Calculate the MD5 signature of all of the audio data.
auto md5 = TRY(ByteBuffer::create_zeroed(128u / 8u));
TRY(header_stream.write_until_depleted(md5));
FlacRawMetadataBlock streaminfo_block = {
.is_last_block = true,
.type = FlacMetadataBlockType::STREAMINFO,
.length = static_cast<u32>(data.size()),
.data = data,
};
TRY(m_stream->write_value(streaminfo_block));
return {};
}
ErrorOr<void> FlacRawMetadataBlock::write_to_stream(Stream& stream) const
{
BigEndianOutputBitStream bit_stream { MaybeOwned<Stream> { stream } };
TRY(bit_stream.write_bits(static_cast<u8>(is_last_block), 1));
TRY(bit_stream.write_bits(to_underlying(type), 7));
TRY(bit_stream.write_bits(length, 24));
VERIFY(data.size() == length);
TRY(bit_stream.write_until_depleted(data));
return {};
}
// If the given sample count is uncommon, this function will return one of the uncommon marker block sizes.
// The caller has to handle and add these later manually.
static BlockSizeCategory to_common_block_size(u16 sample_count)
{
switch (sample_count) {
case 192:
return BlockSizeCategory::S192;
case 576:
return BlockSizeCategory::S576;
case 1152:
return BlockSizeCategory::S1152;
case 2304:
return BlockSizeCategory::S2304;
case 4608:
return BlockSizeCategory::S4608;
case 256:
return BlockSizeCategory::S256;
case 512:
return BlockSizeCategory::S512;
case 1024:
return BlockSizeCategory::S1024;
case 2048:
return BlockSizeCategory::S2048;
case 4096:
return BlockSizeCategory::S4096;
case 8192:
return BlockSizeCategory::S8192;
case 16384:
return BlockSizeCategory::S16384;
case 32768:
return BlockSizeCategory::S32768;
}
if (sample_count - 1 <= 0xff)
return BlockSizeCategory::Uncommon8Bits;
// Data type guarantees that 16-bit storage is possible.
return BlockSizeCategory::Uncommon16Bits;
}
static ByteBuffer to_utf8(u64 value)
{
ByteBuffer buffer;
if (value < 0x7f) {
buffer.append(static_cast<u8>(value));
} else if (value < 0x7ff) {
buffer.append(static_cast<u8>(0b110'00000 | (value >> 6)));
buffer.append(static_cast<u8>(0b10'000000 | (value & 0b111111)));
} else if (value < 0xffff) {
buffer.append(static_cast<u8>(0b1110'0000 | (value >> 12)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 6) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 0) & 0b111111)));
} else if (value < 0x1f'ffff) {
buffer.append(static_cast<u8>(0b11110'000 | (value >> 18)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 12) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 6) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 0) & 0b111111)));
} else if (value < 0x3ff'ffff) {
buffer.append(static_cast<u8>(0b111110'00 | (value >> 24)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 18) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 12) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 6) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 0) & 0b111111)));
} else if (value < 0x7fff'ffff) {
buffer.append(static_cast<u8>(0b1111110'0 | (value >> 30)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 24) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 18) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 12) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 6) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 0) & 0b111111)));
} else if (value < 0xf'ffff'ffff) {
buffer.append(static_cast<u8>(0b11111110));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 30) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 24) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 18) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 12) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 6) & 0b111111)));
buffer.append(static_cast<u8>(0b10'000000 | ((value >> 0) & 0b111111)));
} else {
// Anything larger is illegal even in expanded UTF-8, but FLAC only passes 32-bit values anyways.
VERIFY_NOT_REACHED();
}
return buffer;
}
ErrorOr<void> FlacFrameHeader::write_to_stream(Stream& stream) const
{
Crypto::Checksum::ChecksummingStream<FlacFrameHeaderCRC> checksumming_stream { MaybeOwned<Stream> { stream } };
BigEndianOutputBitStream bit_stream { MaybeOwned<Stream> { checksumming_stream } };
TRY(bit_stream.write_bits(0b11111111111110u, 14));
TRY(bit_stream.write_bits(0u, 1));
TRY(bit_stream.write_bits(to_underlying(blocking_strategy), 1));
auto common_block_size = to_common_block_size(sample_count);
TRY(bit_stream.write_bits(to_underlying(common_block_size), 4));
// We always store sample rate in the file header.
TRY(bit_stream.write_bits(0u, 4));
TRY(bit_stream.write_bits(to_underlying(channels), 4));
// We always store bit depth in the file header.
TRY(bit_stream.write_bits(0u, 3));
// Reserved zero bit.
TRY(bit_stream.write_bits(0u, 1));
auto coded_number = to_utf8(sample_or_frame_index);
TRY(bit_stream.write_until_depleted(coded_number));
if (common_block_size == BlockSizeCategory::Uncommon8Bits)
TRY(bit_stream.write_value(static_cast<u8>(sample_count - 1)));
if (common_block_size == BlockSizeCategory::Uncommon16Bits)
TRY(bit_stream.write_value(BigEndian<u16>(static_cast<u16>(sample_count - 1))));
// Ensure that the checksum is calculated correctly.
TRY(bit_stream.align_to_byte_boundary());
auto checksum = checksumming_stream.digest();
TRY(bit_stream.write_value(checksum));
return {};
}
ErrorOr<void> FlacWriter::write_samples(ReadonlySpan<Sample> samples)
{
if (m_state == WriteState::FullyFinalized)
return Error::from_string_view("File is already finalized"sv);
auto remaining_samples = samples;
while (remaining_samples.size() > 0) {
if (m_sample_buffer.size() == block_size) {
TRY(write_frame());
m_sample_buffer.clear();
}
auto amount_to_copy = min(remaining_samples.size(), m_sample_buffer.capacity() - m_sample_buffer.size());
auto current_buffer_size = m_sample_buffer.size();
TRY(m_sample_buffer.try_resize_and_keep_capacity(current_buffer_size + amount_to_copy));
remaining_samples.copy_trimmed_to(m_sample_buffer.span().slice(current_buffer_size));
remaining_samples = remaining_samples.slice(amount_to_copy);
}
// Ensure that the buffer is flushed if possible.
if (m_sample_buffer.size() == block_size) {
TRY(write_frame());
m_sample_buffer.clear();
}
return {};
}
ErrorOr<void> FlacWriter::write_frame()
{
auto frame_samples = move(m_sample_buffer);
// De-interleave and integer-quantize subframes.
float sample_rescale = static_cast<float>(1 << (m_bits_per_sample - 1));
auto subframe_samples = Vector<Vector<i64, block_size>>();
TRY(subframe_samples.try_resize_and_keep_capacity(m_num_channels));
for (auto const& sample : frame_samples) {
TRY(subframe_samples[0].try_append(static_cast<i64>(sample.left * sample_rescale)));
// FIXME: We don't have proper data for any channels past 2.
for (auto i = 1; i < m_num_channels; ++i)
TRY(subframe_samples[i].try_append(static_cast<i64>(sample.right * sample_rescale)));
}
FlacFrameHeader header {
.sample_rate = m_sample_rate,
.sample_count = static_cast<u16>(frame_samples.size()),
.sample_or_frame_index = static_cast<u32>(m_current_frame),
.blocking_strategy = BlockingStrategy::Fixed,
// FIXME: We should brute-force channel coupling for stereo.
.channels = static_cast<FlacFrameChannelType>(m_num_channels - 1),
.bit_depth = static_cast<u8>(m_bits_per_sample),
// Calculated for us during header write.
.checksum = 0,
};
auto frame_stream = Crypto::Checksum::ChecksummingStream<IBMCRC> { MaybeOwned<Stream> { *m_stream } };
auto frame_start_offset = TRY(m_stream->tell());
TRY(frame_stream.write_value(header));
BigEndianOutputBitStream bit_stream { MaybeOwned<Stream> { frame_stream } };
for (auto const& subframe : subframe_samples)
TRY(write_subframe(subframe.span(), bit_stream));
TRY(bit_stream.align_to_byte_boundary());
auto frame_crc = frame_stream.digest();
dbgln_if(FLAC_ENCODER_DEBUG, "Frame {:4} CRC: {:04x}", m_current_frame, frame_crc);
TRY(frame_stream.write_value<AK::BigEndian<u16>>(frame_crc));
auto frame_end_offset = TRY(m_stream->tell());
auto frame_size = frame_end_offset - frame_start_offset;
m_max_frame_size = max(m_max_frame_size, frame_size);
m_min_frame_size = min(m_min_frame_size, frame_size);
m_current_frame++;
m_sample_count += frame_samples.size();
return {};
}
ErrorOr<void> FlacWriter::write_subframe(ReadonlySpan<i64> subframe, BigEndianOutputBitStream& bit_stream)
{
// The current subframe encoding strategy is as follows:
// - Check if the subframe is constant; use constant encoding in this case.
// - Try all fixed predictors and record the resulting residuals.
// - Estimate their encoding cost by taking the sum of all absolute logarithmic residuals,
// which is an accurate estimate of the final encoded size of the residuals.
// - Accurately estimate the encoding cost of a verbatim subframe.
// - Select the encoding strategy with the lowest cost out of this selection.
auto constant_value = subframe[0];
auto is_constant = true;
for (auto const sample : subframe) {
if (sample != constant_value) {
is_constant = false;
break;
}
}
if (is_constant) {
dbgln_if(FLAC_ENCODER_DEBUG, "Encoding constant frame with value {}", constant_value);
TRY(bit_stream.write_bits(1u, 0));
TRY(bit_stream.write_bits(to_underlying(FlacSubframeType::Constant), 6));
TRY(bit_stream.write_bits(1u, 0));
TRY(bit_stream.write_bits(bit_cast<u64>(constant_value), m_bits_per_sample));
return {};
}
auto verbatim_cost_bits = subframe.size() * m_bits_per_sample;
Optional<FlacLPCEncodedSubframe> best_lpc_subframe;
auto current_min_cost = verbatim_cost_bits;
for (auto order : { FlacFixedLPC::Zero, FlacFixedLPC::One, FlacFixedLPC::Two, FlacFixedLPC::Three, FlacFixedLPC::Four }) {
// Too many warm-up samples would be required; the lower-level encoding procedures assume that this was checked.
if (to_underlying(order) > subframe.size())
continue;
auto encode_result = TRY(encode_fixed_lpc(order, subframe, current_min_cost));
if (encode_result.has_value() && encode_result.value().residual_cost_bits < current_min_cost) {
current_min_cost = encode_result.value().residual_cost_bits;
best_lpc_subframe = encode_result.release_value();
}
}
// No LPC encoding was better than verbatim.
if (!best_lpc_subframe.has_value()) {
dbgln_if(FLAC_ENCODER_DEBUG, "Best subframe type was Verbatim; encoding {} samples at {} bps = {} bits", subframe.size(), m_bits_per_sample, verbatim_cost_bits);
TRY(write_verbatim_subframe(subframe, bit_stream));
} else {
dbgln_if(FLAC_ENCODER_DEBUG, "Best subframe type was Fixed LPC order {} (estimated cost {} bits); encoding {} samples", to_underlying(best_lpc_subframe->coefficients.get<FlacFixedLPC>()), best_lpc_subframe->residual_cost_bits, subframe.size());
TRY(write_lpc_subframe(best_lpc_subframe.release_value(), bit_stream));
}
return {};
}
ErrorOr<Optional<FlacLPCEncodedSubframe>> FlacWriter::encode_fixed_lpc(FlacFixedLPC order, ReadonlySpan<i64> subframe, size_t current_min_cost)
{
FlacLPCEncodedSubframe lpc {
.warm_up_samples = Vector<i64> { subframe.trim(to_underlying(order)) },
.coefficients = order,
.residuals {},
// Warm-up sample cost.
.residual_cost_bits = to_underlying(order) * m_bits_per_sample,
.single_partition_optimal_order {},
};
TRY(lpc.residuals.try_ensure_capacity(subframe.size() - to_underlying(order)));
Vector<i64> predicted;
TRY(predicted.try_resize_and_keep_capacity(subframe.size()));
lpc.warm_up_samples.span().copy_trimmed_to(predicted);
// NOTE: Although we can't interrupt the prediction if the corresponding residuals would become too bad,
// we don't need to branch on the order in every loop during prediction, meaning this shouldn't cost us much.
predict_fixed_lpc(order, subframe, predicted);
// There isnt really a way of computing an LPCs cost without performing most of the calculations, including a Rice parameter search.
// This is nevertheless optimized in multiple ways, so that we always bail out once we are sure no improvements can be made.
auto extra_residual_cost = NumericLimits<size_t>::max();
// Keep track of when we want to estimate costs again. We don't do this for every new residual since it's an expensive procedure.
// The likelihood for misprediction is pretty high for large orders; start with a later index for them.
auto next_cost_estimation_index = min(subframe.size() - 1, first_residual_estimation * (to_underlying(order) + 1));
for (auto i = to_underlying(order); i < subframe.size(); ++i) {
auto residual = subframe[i] - predicted[i];
if (!AK::is_within_range<i32>(residual)) {
dbgln_if(FLAC_ENCODER_DEBUG, "Bailing from Fixed LPC order {} due to residual overflow ({} is outside the 32-bit range)", to_underlying(order), residual);
return Optional<FlacLPCEncodedSubframe> {};
}
lpc.residuals.append(residual);
if (i >= next_cost_estimation_index) {
// Find best exponential Golomb order.
// Storing this in the LPC data allows us to automatically reuse the computation during LPC encoding.
// FIXME: Use more than one partition to improve compression.
// FIXME: Investigate whether this can be estimated “good enough” to improve performance at the cost of compression strength.
// Especially at larger sample counts, it is unlikely that we will find a different optimal order.
// Therefore, use a zig-zag search around the previous optimal order.
extra_residual_cost = NumericLimits<size_t>::max();
auto start_order = lpc.single_partition_optimal_order;
size_t useless_parameters = 0;
size_t steps = 0;
constexpr auto max_rice_parameter = AK::exp2(4) - 1;
for (auto offset = 0; start_order + offset < max_rice_parameter || start_order - offset >= 0; ++offset) {
for (auto factor : { -1, 1 }) {
auto k = start_order + factor * offset;
if (k >= max_rice_parameter || k < 0)
continue;
auto order_cost = count_exp_golomb_bits_in(k, lpc.residuals);
if (order_cost < extra_residual_cost) {
extra_residual_cost = order_cost;
lpc.single_partition_optimal_order = k;
} else {
useless_parameters++;
}
steps++;
// Dont do 0 twice.
if (offset == 0)
break;
}
// If we found enough useless parameters, we probably won't find useful ones anymore.
// The only exception is the first ever parameter search, where we search everything.
if (useless_parameters >= useless_parameter_threshold && start_order != 0)
break;
}
// Min cost exceeded; bail out.
if (lpc.residual_cost_bits + extra_residual_cost > current_min_cost) {
dbgln_if(FLAC_ENCODER_DEBUG, " Bailing from Fixed LPC order {} at sample index {} and cost {} (best {})", to_underlying(order), i, lpc.residual_cost_bits + extra_residual_cost, current_min_cost);
return Optional<FlacLPCEncodedSubframe> {};
}
// Figure out when to next estimate costs.
auto estimated_bits_per_residual = static_cast<double>(extra_residual_cost) / static_cast<double>(i);
auto estimated_residuals_for_min_cost = static_cast<double>(current_min_cost) / estimated_bits_per_residual;
auto unchecked_next_cost_estimation_index = AK::round_to<size_t>(estimated_residuals_for_min_cost * (1 - residual_cost_margin));
// Check either at the estimated residual, or the next residual if that is in the past, or the last residual.
next_cost_estimation_index = min(subframe.size() - 1, max(unchecked_next_cost_estimation_index, i + min_residual_estimation_step));
dbgln_if(FLAC_ENCODER_DEBUG, " {} {:4} Estimate cost/residual {:.1f} (param {:2} after {:2} steps), will hit at {:6.1f}, jumping to {:4} (sanitized to {:4})", to_underlying(order), i, estimated_bits_per_residual, lpc.single_partition_optimal_order, steps, estimated_residuals_for_min_cost, unchecked_next_cost_estimation_index, next_cost_estimation_index);
}
}
lpc.residual_cost_bits += extra_residual_cost;
return lpc;
}
void predict_fixed_lpc(FlacFixedLPC order, ReadonlySpan<i64> samples, Span<i64> predicted_output)
{
switch (order) {
case FlacFixedLPC::Zero:
// s_0(t) = 0
for (auto i = to_underlying(order); i < predicted_output.size(); ++i)
predicted_output[i] += 0;
break;
case FlacFixedLPC::One:
// s_1(t) = s(t-1)
for (auto i = to_underlying(order); i < predicted_output.size(); ++i)
predicted_output[i] += samples[i - 1];
break;
case FlacFixedLPC::Two:
// s_2(t) = 2s(t-1) - s(t-2)
for (auto i = to_underlying(order); i < predicted_output.size(); ++i)
predicted_output[i] += 2 * samples[i - 1] - samples[i - 2];
break;
case FlacFixedLPC::Three:
// s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3)
for (auto i = to_underlying(order); i < predicted_output.size(); ++i)
predicted_output[i] += 3 * samples[i - 1] - 3 * samples[i - 2] + samples[i - 3];
break;
case FlacFixedLPC::Four:
// s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4)
for (auto i = to_underlying(order); i < predicted_output.size(); ++i)
predicted_output[i] += 4 * samples[i - 1] - 6 * samples[i - 2] + 4 * samples[i - 3] - samples[i - 4];
break;
default:
VERIFY_NOT_REACHED();
}
}
// https://www.ietf.org/archive/id/draft-ietf-cellar-flac-08.html#name-verbatim-subframe
ErrorOr<void> FlacWriter::write_verbatim_subframe(ReadonlySpan<i64> subframe, BigEndianOutputBitStream& bit_stream)
{
TRY(bit_stream.write_bits(0u, 1));
TRY(bit_stream.write_bits(to_underlying(FlacSubframeType::Verbatim), 6));
TRY(bit_stream.write_bits(0u, 1));
for (auto const& sample : subframe)
TRY(bit_stream.write_bits(bit_cast<u64>(sample), m_bits_per_sample));
return {};
}
// https://www.ietf.org/archive/id/draft-ietf-cellar-flac-08.html#name-fixed-predictor-subframe
ErrorOr<void> FlacWriter::write_lpc_subframe(FlacLPCEncodedSubframe lpc_subframe, BigEndianOutputBitStream& bit_stream)
{
// Reserved.
TRY(bit_stream.write_bits(0u, 1));
// 9.2.1 Subframe header (https://www.ietf.org/archive/id/draft-ietf-cellar-flac-08.html#name-subframe-header)
u8 encoded_type;
if (lpc_subframe.coefficients.has<FlacFixedLPC>())
encoded_type = to_underlying(lpc_subframe.coefficients.get<FlacFixedLPC>()) + to_underlying(FlacSubframeType::Fixed);
else
encoded_type = lpc_subframe.coefficients.get<Vector<i64>>().size() - 1 + to_underlying(FlacSubframeType::LPC);
TRY(bit_stream.write_bits(encoded_type, 6));
// No wasted bits per sample (unnecessary for the vast majority of data).
TRY(bit_stream.write_bits(0u, 1));
for (auto const& warm_up_sample : lpc_subframe.warm_up_samples)
TRY(bit_stream.write_bits(bit_cast<u64>(warm_up_sample), m_bits_per_sample));
// 4-bit Rice parameters.
TRY(bit_stream.write_bits(0b00u, 2));
// Only one partition (2^0 = 1).
TRY(bit_stream.write_bits(0b0000u, 4));
TRY(write_rice_partition(lpc_subframe.single_partition_optimal_order, lpc_subframe.residuals, bit_stream));
return {};
}
ErrorOr<void> FlacWriter::write_rice_partition(u8 k, ReadonlySpan<i64> residuals, BigEndianOutputBitStream& bit_stream)
{
TRY(bit_stream.write_bits(k, 4));
for (auto const& residual : residuals)
TRY(encode_unsigned_exp_golomb(k, static_cast<i32>(residual), bit_stream));
return {};
}
u32 signed_to_rice(i32 x)
{
// Implements (x < 0 ? -1 : 0) + 2 * abs(x) in about half as many instructions.
// The reference encoders implementation is known to be the fastest on -O2/3 clang and gcc:
// x << 1 = multiply by 2.
// For negative numbers, x >> 31 will create an all-ones XOR mask, meaning that the number will be inverted.
// In two's complement this is -value - 1, exactly what we need.
// For positive numbers, x >> 31 == 0.
return static_cast<u32>((x << 1) ^ (x >> 31));
}
// Adopted from https://github.com/xiph/flac/blob/28e4f0528c76b296c561e922ba67d43751990599/src/libFLAC/bitwriter.c#L727
ErrorOr<void> encode_unsigned_exp_golomb(u8 k, i32 value, BigEndianOutputBitStream& bit_stream)
{
auto zigzag_encoded = signed_to_rice(value);
auto msbs = zigzag_encoded >> k;
auto pattern = 1u << k;
pattern |= zigzag_encoded & ((1 << k) - 1);
TRY(bit_stream.write_bits(0u, msbs));
TRY(bit_stream.write_bits(pattern, k + 1));
return {};
}
// Adopted from count_rice_bits_in_partition():
// https://github.com/xiph/flac/blob/28e4f0528c76b296c561e922ba67d43751990599/src/libFLAC/stream_encoder.c#L4299
size_t count_exp_golomb_bits_in(u8 k, ReadonlySpan<i64> residuals)
{
// Exponential Golomb order size (4).
// One unary stop bit and the entire exponential Golomb parameter for every residual.
size_t partition_bits = 4 + (1 + k) * residuals.size();
// Bit magic to compute the amount of leading unary bits.
for (auto const& residual : residuals)
partition_bits += (static_cast<u32>((residual << 1) ^ (residual >> 31)) >> k);
return partition_bits;
}
}