1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-27 05:47:35 +00:00

LibCrypto: Implement little endian CRC using the slicing-by-8 algorithm

This implements Intel's slicing-by-8 algorithm for CRC checksums (only
little endian CPUs for now, as I don't have a way to test big endian).

The original paper for this algorithm seems to have disappeared, but
Intel's source code is still available as a reference:

    https://sourceforge.net/projects/slicing-by-8/

As well as other implementations for reference:

    https://docs.rs/slice-by-8/latest/src/slice_by_8/algorithm.rs.html

Using the "enwik8" file as a test (100MB uncompressed, commonly used in
benchmarks: https://www.mattmahoney.net/dc/enwik8.zip), decompression
time decreases from:

    4.89s to 3.52s on Serenity (cold)
    1.72s to 1.32s on Serenity (warm)
    1.06s to 0.92s on Linux
This commit is contained in:
Timothy Flynn 2023-03-30 09:18:59 -04:00 committed by Andreas Kling
parent 83cb73a045
commit 62b575ad7c

View file

@ -5,6 +5,7 @@
*/ */
#include <AK/Array.h> #include <AK/Array.h>
#include <AK/NumericLimits.h>
#include <AK/Span.h> #include <AK/Span.h>
#include <AK/Types.h> #include <AK/Types.h>
#include <LibCrypto/Checksum/CRC32.h> #include <LibCrypto/Checksum/CRC32.h>
@ -46,6 +47,97 @@ void CRC32::update(ReadonlyBytes span)
#else #else
static constexpr size_t ethernet_polynomial = 0xEDB88320;
# if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
// This implements Intel's slicing-by-8 algorithm. Their original paper is no longer on their website,
// but their source code is still available for reference:
// https://sourceforge.net/projects/slicing-by-8/
static constexpr auto generate_table()
{
Array<Array<u32, 256>, 8> data {};
for (u32 i = 0; i < 256; ++i) {
auto value = i;
for (size_t j = 0; j < 8; ++j)
value = (value >> 1) ^ ((value & 1) * ethernet_polynomial);
data[0][i] = value;
}
for (u32 i = 0; i < 256; ++i) {
for (size_t j = 1; j < 8; ++j)
data[j][i] = (data[j - 1][i] >> 8) ^ data[0][data[j - 1][i] & 0xff];
}
return data;
}
static constexpr auto table = generate_table();
struct AlignmentData {
ReadonlyBytes misaligned;
ReadonlyBytes aligned;
};
static AlignmentData split_bytes_for_alignment(ReadonlyBytes data, size_t alignment)
{
auto address = reinterpret_cast<uintptr_t>(data.data());
auto offset = alignment - address % alignment;
if (offset == alignment)
return { {}, data };
if (data.size() < alignment)
return { data, {} };
return { data.trim(offset), data.slice(offset) };
}
static constexpr u32 single_byte_crc(u32 crc, u8 byte)
{
return (crc >> 8) ^ table[0][(crc & 0xff) ^ byte];
}
void CRC32::update(ReadonlyBytes data)
{
// The provided data may not be aligned to a 4-byte boundary, required to reinterpret its address
// into a u32 in the loop below. So we split the bytes into two segments: the misaligned bytes
// (which undergo the standard 1-byte-at-a-time algorithm) and remaining aligned bytes.
auto [misaligned_data, aligned_data] = split_bytes_for_alignment(data, alignof(u32));
for (auto byte : misaligned_data)
m_state = single_byte_crc(m_state, byte);
while (aligned_data.size() >= 8) {
auto const* segment = reinterpret_cast<u32 const*>(aligned_data.data());
auto low = *segment ^ m_state;
auto high = *(++segment);
// clang-format will put this all on one line, which is really hard to read.
// clang-format off
m_state = table[0][(high >> 24) & 0xff]
^ table[1][(high >> 16) & 0xff]
^ table[2][(high >> 8) & 0xff]
^ table[3][high & 0xff]
^ table[4][(low >> 24) & 0xff]
^ table[5][(low >> 16) & 0xff]
^ table[6][(low >> 8) & 0xff]
^ table[7][low & 0xff];
// clang-format on
aligned_data = aligned_data.slice(8);
}
for (auto byte : aligned_data)
m_state = single_byte_crc(m_state, byte);
};
# else
// FIXME: Implement the slicing-by-8 algorithm for big endian CPUs.
static constexpr auto generate_table() static constexpr auto generate_table()
{ {
Array<u32, 256> data {}; Array<u32, 256> data {};
@ -54,7 +146,7 @@ static constexpr auto generate_table()
for (auto j = 0; j < 8; j++) { for (auto j = 0; j < 8; j++) {
if (value & 1) { if (value & 1) {
value = 0xEDB88320 ^ (value >> 1); value = ethernet_polynomial ^ (value >> 1);
} else { } else {
value = value >> 1; value = value >> 1;
} }
@ -74,6 +166,7 @@ void CRC32::update(ReadonlyBytes data)
} }
}; };
# endif
#endif #endif
u32 CRC32::digest() u32 CRC32::digest()