1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 04:28:13 +00:00

LibWeb: Implement complex transform interpolation

With this commit, we can interpolate between transforms whose functions
don't match. For example:
    translate(100px) -> scale(2) translateX(50px)
This commit is contained in:
Matthew Olsson 2024-02-28 18:51:07 -07:00 committed by Andreas Kling
parent 892f407d75
commit 6d0672eec0

View file

@ -69,6 +69,7 @@
#include <LibWeb/Layout/Node.h>
#include <LibWeb/Loader/ResourceLoader.h>
#include <LibWeb/Namespace.h>
#include <LibWeb/Painting/PaintableBox.h>
#include <LibWeb/Platform/FontPlugin.h>
#include <LibWeb/ReferrerPolicy/AbstractOperations.h>
#include <math.h>
@ -758,18 +759,315 @@ static ErrorOr<void> cascade_custom_properties(DOM::Element& element, Optional<C
return {};
}
static ErrorOr<NonnullRefPtr<StyleValue const>> interpolate_value(StyleValue const& from, StyleValue const& to, float delta)
template<typename T>
static T interpolate_raw(T from, T to, float delta)
{
if constexpr (IsSame<T, double>) {
return from + (to - from) * static_cast<double>(delta);
} else {
return static_cast<RemoveCVReference<T>>(from + (to - from) * delta);
}
}
static ErrorOr<NonnullRefPtr<StyleValue const>> interpolate_transform(DOM::Element& element, StyleValue const& from, StyleValue const& to, float delta)
{
// Note that the spec uses column-major notation, so all the matrix indexing is reversed.
static constexpr auto make_transformation = [](TransformationStyleValue const& transformation) -> ErrorOr<Transformation> {
Vector<TransformValue> values;
for (auto const& value : transformation.values()) {
switch (value->type()) {
case StyleValue::Type::Angle:
values.append(AngleOrCalculated { value->as_angle().angle() });
break;
case StyleValue::Type::Calculated:
values.append(AngleOrCalculated { value->as_calculated() });
break;
case StyleValue::Type::Length:
values.append(LengthPercentage { value->as_length().length() });
break;
case StyleValue::Type::Percentage:
values.append(LengthPercentage { value->as_percentage().percentage() });
break;
case StyleValue::Type::Number:
values.append(NumberPercentage { Number(Number::Type::Number, value->as_number().number()) });
break;
default:
return Error::from_string_literal("Transform contains unsupported style value");
}
}
return Transformation { transformation.transform_function(), move(values) };
};
static constexpr auto transformation_style_value_to_matrix = [](DOM::Element& element, TransformationStyleValue const& value) -> ErrorOr<FloatMatrix4x4> {
auto transformation = TRY(make_transformation(value.as_transformation()));
Optional<Painting::PaintableBox const&> paintable_box;
if (auto layout_node = element.layout_node()) {
if (auto paintable = layout_node->paintable(); paintable && is<Painting::PaintableBox>(paintable))
paintable_box = *static_cast<Painting::PaintableBox*>(paintable);
}
return transformation.to_matrix(paintable_box);
};
static constexpr auto style_value_to_matrix = [](DOM::Element& element, StyleValue const& value) -> ErrorOr<FloatMatrix4x4> {
if (value.to_identifier() == ValueID::None)
return FloatMatrix4x4::identity();
if (value.is_transformation())
return transformation_style_value_to_matrix(element, value.as_transformation());
VERIFY(value.is_value_list());
auto matrix = FloatMatrix4x4::identity();
for (auto const& value_element : value.as_value_list().values()) {
if (value_element->is_transformation())
matrix = matrix * TRY(transformation_style_value_to_matrix(element, value_element->as_transformation()));
}
return matrix;
};
struct DecomposedValues {
FloatVector3 translation;
FloatVector3 scale;
FloatVector3 skew;
FloatVector4 rotation;
FloatVector4 perspective;
};
// https://drafts.csswg.org/css-transforms-2/#decomposing-a-3d-matrix
static constexpr auto decompose = [](FloatMatrix4x4 matrix) -> ErrorOr<DecomposedValues> {
// https://drafts.csswg.org/css-transforms-1/#supporting-functions
static constexpr auto combine = [](auto a, auto b, float ascl, float bscl) {
return FloatVector3 {
ascl * a[0] + bscl * b[0],
ascl * a[1] + bscl * b[1],
ascl * a[2] + bscl * b[2],
};
};
// Normalize the matrix.
if (matrix(3, 3) == 0.f)
return Error::from_string_literal("Cannot interpolate non-invertible matrix");
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
matrix(i, j) /= matrix(3, 3);
// perspectiveMatrix is used to solve for perspective, but it also provides
// an easy way to test for singularity of the upper 3x3 component.
auto perspective_matrix = matrix;
for (int i = 0; i < 3; i++)
perspective_matrix(3, i) = 0.f;
perspective_matrix(3, 3) = 1.f;
if (!perspective_matrix.is_invertible())
return Error::from_string_literal("Cannot interpolate non-invertible matrix");
DecomposedValues values;
// First, isolate perspective.
if (matrix(3, 0) != 0.f || matrix(3, 1) != 0.f || matrix(3, 2) != 0.f) {
// rightHandSide is the right hand side of the equation.
// Note: It is the bottom side in a row-major matrix
FloatVector4 bottom_side = {
matrix(3, 0),
matrix(3, 1),
matrix(3, 2),
matrix(3, 3),
};
// Solve the equation by inverting perspectiveMatrix and multiplying
// rightHandSide by the inverse.
auto inverse_perspective_matrix = perspective_matrix.inverse();
auto transposed_inverse_perspective_matrix = inverse_perspective_matrix.transpose();
values.perspective = transposed_inverse_perspective_matrix * bottom_side;
} else {
// No perspective.
values.perspective = { 0.0, 0.0, 0.0, 1.0 };
}
// Next take care of translation
for (int i = 0; i < 3; i++)
values.translation[i] = matrix(i, 3);
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
FloatVector3 row[3];
for (int i = 0; i < 3; i++)
row[i] = { matrix(0, i), matrix(1, i), matrix(2, i) };
// Compute X scale factor and normalize first row.
values.scale[0] = row[0].length();
row[0].normalize();
// Compute XY shear factor and make 2nd row orthogonal to 1st.
values.skew[0] = row[0].dot(row[1]);
row[1] = combine(row[1], row[0], 1.f, -values.skew[0]);
// Now, compute Y scale and normalize 2nd row.
values.scale[1] = row[1].length();
row[1].normalize();
values.skew[0] /= values.scale[1];
// Compute XZ and YZ shears, orthogonalize 3rd row
values.skew[1] = row[0].dot(row[2]);
row[2] = combine(row[2], row[0], 1.f, -values.skew[1]);
values.skew[2] = row[1].dot(row[2]);
row[2] = combine(row[2], row[1], 1.f, -values.skew[2]);
// Next, get Z scale and normalize 3rd row.
values.scale[2] = row[2].length();
row[2].normalize();
values.skew[1] /= values.scale[2];
values.skew[2] /= values.scale[2];
// At this point, the matrix (in rows) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
auto pdum3 = row[1].cross(row[2]);
if (row[0].dot(pdum3) < 0.f) {
for (int i = 0; i < 3; i++) {
values.scale[i] *= -1.f;
row[i][0] *= -1.f;
row[i][1] *= -1.f;
row[i][2] *= -1.f;
}
}
// Now, get the rotations out
values.rotation[0] = 0.5f * sqrt(max(1.f + row[0][0] - row[1][1] - row[2][2], 0.f));
values.rotation[1] = 0.5f * sqrt(max(1.f - row[0][0] + row[1][1] - row[2][2], 0.f));
values.rotation[2] = 0.5f * sqrt(max(1.f - row[0][0] - row[1][1] + row[2][2], 0.f));
values.rotation[3] = 0.5f * sqrt(max(1.f + row[0][0] + row[1][1] + row[2][2], 0.f));
if (row[2][1] > row[1][2])
values.rotation[0] = -values.rotation[0];
if (row[0][2] > row[2][0])
values.rotation[1] = -values.rotation[1];
if (row[1][0] > row[0][1])
values.rotation[2] = -values.rotation[2];
// FIXME: This accounts for the fact that the browser coordinate system is left-handed instead of right-handed.
// The reason for this is that the positive Y-axis direction points down instead of up. To fix this, we
// invert the Y axis. However, it feels like the spec pseudo-code above should have taken something like
// this into account, so we're probably doing something else wrong.
values.rotation[2] *= -1;
return values;
};
// https://drafts.csswg.org/css-transforms-2/#recomposing-to-a-3d-matrix
static constexpr auto recompose = [](DecomposedValues const& values) -> FloatMatrix4x4 {
auto matrix = FloatMatrix4x4::identity();
// apply perspective
for (int i = 0; i < 4; i++)
matrix(3, i) = values.perspective[i];
// apply translation
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 3; j++)
matrix(i, 3) += values.translation[j] * matrix(i, j);
}
// apply rotation
auto x = values.rotation[0];
auto y = values.rotation[1];
auto z = values.rotation[2];
auto w = values.rotation[3];
// Construct a composite rotation matrix from the quaternion values
// rotationMatrix is a identity 4x4 matrix initially
auto rotation_matrix = FloatMatrix4x4::identity();
rotation_matrix(0, 0) = 1.f - 2.f * (y * y + z * z);
rotation_matrix(1, 0) = 2.f * (x * y - z * w);
rotation_matrix(2, 0) = 2.f * (x * z + y * w);
rotation_matrix(0, 1) = 2.f * (x * y + z * w);
rotation_matrix(1, 1) = 1.f - 2.f * (x * x + z * z);
rotation_matrix(2, 1) = 2.f * (y * z - x * w);
rotation_matrix(0, 2) = 2.f * (x * z - y * w);
rotation_matrix(1, 2) = 2.f * (y * z + x * w);
rotation_matrix(2, 2) = 1.f - 2.f * (x * x + y * y);
matrix = matrix * rotation_matrix;
// apply skew
// temp is a identity 4x4 matrix initially
auto temp = FloatMatrix4x4::identity();
if (values.skew[2] != 0.f) {
temp(1, 2) = values.skew[2];
matrix = matrix * temp;
}
if (values.skew[1] != 0.f) {
temp(1, 2) = 0.f;
temp(0, 2) = values.skew[1];
matrix = matrix * temp;
}
if (values.skew[0] != 0.f) {
temp(0, 2) = 0.f;
temp(0, 1) = values.skew[0];
matrix = matrix * temp;
}
// apply scale
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++)
matrix(j, i) *= values.scale[i];
}
return matrix;
};
// https://drafts.csswg.org/css-transforms-2/#interpolation-of-decomposed-3d-matrix-values
static constexpr auto interpolate = [](DecomposedValues& from, DecomposedValues& to, float delta) -> DecomposedValues {
auto product = clamp(from.rotation.dot(to.rotation), -1.0f, 1.0f);
FloatVector4 interpolated_rotation;
if (fabsf(product) == 1.0f) {
interpolated_rotation = from.rotation;
} else {
auto theta = acos(product);
auto w = sin(delta * theta) / sqrtf(1.0f - product * product);
for (int i = 0; i < 4; i++) {
from.rotation[i] *= cos(delta * theta) - product * w;
to.rotation[i] *= w;
interpolated_rotation[i] = from.rotation[i] + to.rotation[i];
}
}
return {
interpolate_raw(from.translation, to.translation, delta),
interpolate_raw(from.scale, to.scale, delta),
interpolate_raw(from.skew, to.skew, delta),
interpolated_rotation,
interpolate_raw(from.perspective, to.perspective, delta),
};
};
auto from_matrix = TRY(style_value_to_matrix(element, from));
auto to_matrix = TRY(style_value_to_matrix(element, to));
auto from_decomposed = TRY(decompose(from_matrix));
auto to_decomposed = TRY(decompose(to_matrix));
auto interpolated_decomposed = interpolate(from_decomposed, to_decomposed, delta);
auto interpolated = recompose(interpolated_decomposed);
StyleValueVector values;
values.ensure_capacity(16);
for (int i = 0; i < 16; i++)
values.append(NumberStyleValue::create(static_cast<double>(interpolated(i % 4, i / 4))));
return StyleValueList::create({ TransformationStyleValue::create(TransformFunction::Matrix3d, move(values)) }, StyleValueList::Separator::Comma);
}
static ErrorOr<NonnullRefPtr<StyleValue const>> interpolate_value(DOM::Element& element, StyleValue const& from, StyleValue const& to, float delta)
{
if (from.type() != to.type())
return delta >= 0.5f ? to : from;
auto interpolate_raw = [delta = static_cast<double>(delta)](auto from, auto to) {
return static_cast<RemoveCVReference<decltype(from)>>(static_cast<double>(from) + static_cast<double>(to - from) * delta);
};
switch (from.type()) {
case StyleValue::Type::Angle:
return AngleStyleValue::create(Angle::make_degrees(interpolate_raw(from.as_angle().angle().to_degrees(), to.as_angle().angle().to_degrees())));
return AngleStyleValue::create(Angle::make_degrees(interpolate_raw(from.as_angle().angle().to_degrees(), to.as_angle().angle().to_degrees(), delta)));
case StyleValue::Type::Color: {
auto from_color = from.as_color().color();
auto to_color = to.as_color().color();
@ -777,41 +1075,41 @@ static ErrorOr<NonnullRefPtr<StyleValue const>> interpolate_value(StyleValue con
auto to_oklab = to_color.to_oklab();
auto color = Color::from_oklab(
interpolate_raw(from_oklab.L, to_oklab.L),
interpolate_raw(from_oklab.a, to_oklab.a),
interpolate_raw(from_oklab.b, to_oklab.b));
color.set_alpha(interpolate_raw(from_color.alpha(), to_color.alpha()));
interpolate_raw(from_oklab.L, to_oklab.L, delta),
interpolate_raw(from_oklab.a, to_oklab.a, delta),
interpolate_raw(from_oklab.b, to_oklab.b, delta));
color.set_alpha(interpolate_raw(from_color.alpha(), to_color.alpha(), delta));
return ColorStyleValue::create(color);
}
case StyleValue::Type::Integer:
return IntegerStyleValue::create(interpolate_raw(from.as_integer().integer(), to.as_integer().integer()));
return IntegerStyleValue::create(interpolate_raw(from.as_integer().integer(), to.as_integer().integer(), delta));
case StyleValue::Type::Length: {
auto& from_length = from.as_length().length();
auto& to_length = to.as_length().length();
return LengthStyleValue::create(Length(interpolate_raw(from_length.raw_value(), to_length.raw_value()), from_length.type()));
return LengthStyleValue::create(Length(interpolate_raw(from_length.raw_value(), to_length.raw_value(), delta), from_length.type()));
}
case StyleValue::Type::Number:
return NumberStyleValue::create(interpolate_raw(from.as_number().number(), to.as_number().number()));
return NumberStyleValue::create(interpolate_raw(from.as_number().number(), to.as_number().number(), delta));
case StyleValue::Type::Percentage:
return PercentageStyleValue::create(Percentage(interpolate_raw(from.as_percentage().percentage().value(), to.as_percentage().percentage().value())));
return PercentageStyleValue::create(Percentage(interpolate_raw(from.as_percentage().percentage().value(), to.as_percentage().percentage().value(), delta)));
case StyleValue::Type::Position: {
// https://www.w3.org/TR/css-values-4/#combine-positions
// FIXME: Interpolation of <position> is defined as the independent interpolation of each component (x, y) normalized as an offset from the top left corner as a <length-percentage>.
auto& from_position = from.as_position();
auto& to_position = to.as_position();
return PositionStyleValue::create(
TRY(interpolate_value(from_position.edge_x(), to_position.edge_x(), delta))->as_edge(),
TRY(interpolate_value(from_position.edge_y(), to_position.edge_y(), delta))->as_edge());
TRY(interpolate_value(element, from_position.edge_x(), to_position.edge_x(), delta))->as_edge(),
TRY(interpolate_value(element, from_position.edge_y(), to_position.edge_y(), delta))->as_edge());
}
case StyleValue::Type::Rect: {
auto from_rect = from.as_rect().rect();
auto to_rect = to.as_rect().rect();
return RectStyleValue::create({
Length(interpolate_raw(from_rect.top_edge.raw_value(), to_rect.top_edge.raw_value()), from_rect.top_edge.type()),
Length(interpolate_raw(from_rect.right_edge.raw_value(), to_rect.right_edge.raw_value()), from_rect.right_edge.type()),
Length(interpolate_raw(from_rect.bottom_edge.raw_value(), to_rect.bottom_edge.raw_value()), from_rect.bottom_edge.type()),
Length(interpolate_raw(from_rect.left_edge.raw_value(), to_rect.left_edge.raw_value()), from_rect.left_edge.type()),
Length(interpolate_raw(from_rect.top_edge.raw_value(), to_rect.top_edge.raw_value(), delta), from_rect.top_edge.type()),
Length(interpolate_raw(from_rect.right_edge.raw_value(), to_rect.right_edge.raw_value(), delta), from_rect.right_edge.type()),
Length(interpolate_raw(from_rect.bottom_edge.raw_value(), to_rect.bottom_edge.raw_value(), delta), from_rect.bottom_edge.type()),
Length(interpolate_raw(from_rect.left_edge.raw_value(), to_rect.left_edge.raw_value(), delta), from_rect.left_edge.type()),
});
}
case StyleValue::Type::Transformation:
@ -825,7 +1123,7 @@ static ErrorOr<NonnullRefPtr<StyleValue const>> interpolate_value(StyleValue con
StyleValueVector interpolated_values;
interpolated_values.ensure_capacity(from_list.size());
for (size_t i = 0; i < from_list.size(); ++i)
interpolated_values.append(TRY(interpolate_value(from_list.values()[i], to_list.values()[i], delta)));
interpolated_values.append(TRY(interpolate_value(element, from_list.values()[i], to_list.values()[i], delta)));
return StyleValueList::create(move(interpolated_values), from_list.separator());
}
@ -834,12 +1132,12 @@ static ErrorOr<NonnullRefPtr<StyleValue const>> interpolate_value(StyleValue con
}
}
static ErrorOr<ValueComparingNonnullRefPtr<StyleValue const>> interpolate_property(PropertyID property_id, StyleValue const& from, StyleValue const& to, float delta)
static ErrorOr<ValueComparingNonnullRefPtr<StyleValue const>> interpolate_property(DOM::Element& element, PropertyID property_id, StyleValue const& from, StyleValue const& to, float delta)
{
auto animation_type = animation_type_from_longhand_property(property_id);
switch (animation_type) {
case AnimationType::ByComputedValue:
return interpolate_value(from, to, delta);
return interpolate_value(element, from, to, delta);
case AnimationType::None:
return to;
case AnimationType::Custom: {
@ -861,7 +1159,7 @@ static ErrorOr<ValueComparingNonnullRefPtr<StyleValue const>> interpolate_proper
}
}
}
return from;
return interpolate_transform(element, from, to, delta);
}
// FIXME: Handle all custom animatable properties
@ -955,7 +1253,7 @@ ErrorOr<void> StyleComputer::collect_animation_into(JS::NonnullGCPtr<Animations:
auto start = resolved_start_property.release_nonnull();
auto end = resolved_end_property.release_nonnull();
auto next_value = TRY(interpolate_property(it.key, *start, *end, progress_in_keyframe));
auto next_value = TRY(interpolate_property(*effect->target(), it.key, *start, *end, progress_in_keyframe));
dbgln_if(LIBWEB_CSS_ANIMATION_DEBUG, "Interpolated value for property {} at {}: {} -> {} = {}", string_from_property_id(it.key), progress_in_keyframe, start->to_string(), end->to_string(), next_value->to_string());
style_properties.set_property(it.key, next_value);
}