1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-26 04:57:44 +00:00

LibJS: Add ECMA-262 section/title/URL comments almost everywhere

As mentioned on Discord earlier, we'll add these to all new functions
going forward - this is the backfill. Reasons:

- It makes you look at the spec, implementing based on MDN or V8
  behavior is a no-go
- It makes finding the various functions that are non-compliant easier,
  in the future everything should either have such a comment or, if it's
  not from the spec at all, a comment explaining why that is the case
- It makes it easier to check whether a certain abstract operation is
  implemented in LibJS, not all of them use the same name as the spec.
  E.g. RejectPromise() is Promise::reject()
- It makes it easier to reason about vm.arguments(), e.g. when the
  function has a rest parameter
- It makes it easier to see whether a certain function is from a
  proposal or Annex B

Also:

- Add arguments to all functions and abstract operations that already
  had a comment
- Fix some outdated section numbers
- Replace some ecma-international.org URLs with tc39.es
This commit is contained in:
Linus Groh 2021-06-13 00:22:35 +01:00
parent 322c8a3995
commit 7327a28ccc
52 changed files with 480 additions and 101 deletions

View file

@ -60,6 +60,7 @@ void MathObject::initialize(GlobalObject& global_object)
define_native_function(vm.names.cosh, cosh, 1, attr);
define_native_function(vm.names.tanh, tanh, 1, attr);
// 21.3.1 Value Properties of the Math Object, https://tc39.es/ecma262/#sec-value-properties-of-the-math-object
define_property(vm.names.E, Value(M_E), 0);
define_property(vm.names.LN2, Value(M_LN2), 0);
define_property(vm.names.LN10, Value(M_LN10), 0);
@ -69,6 +70,7 @@ void MathObject::initialize(GlobalObject& global_object)
define_property(vm.names.SQRT1_2, Value(M_SQRT1_2), 0);
define_property(vm.names.SQRT2, Value(M_SQRT2), 0);
// 21.3.1.9 Math [ @@toStringTag ], https://tc39.es/ecma262/#sec-math-@@tostringtag
define_property(vm.well_known_symbol_to_string_tag(), js_string(vm.heap(), "Math"), Attribute::Configurable);
}
@ -76,6 +78,7 @@ MathObject::~MathObject()
{
}
// 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
{
auto number = vm.argument(0).to_number(global_object);
@ -90,6 +93,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
return Value(number.as_double() < 0 ? -number.as_double() : number.as_double());
}
// 21.3.2.27 Math.random ( ), https://tc39.es/ecma262/#sec-math.random
JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
{
#ifdef __serenity__
@ -100,6 +104,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
return Value(r);
}
// 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
{
auto number = vm.argument(0).to_number(global_object);
@ -110,6 +115,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
return Value(::sqrt(number.as_double()));
}
// 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
{
auto number = vm.argument(0).to_number(global_object);
@ -120,6 +126,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
return Value(::floor(number.as_double()));
}
// 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
{
auto number = vm.argument(0).to_number(global_object);
@ -133,6 +140,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
return Value(::ceil(number.as_double()));
}
// 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
{
auto number = vm.argument(0).to_number(global_object);
@ -152,6 +160,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
return Value(intpart);
}
// 21.3.2.24 Math.max ( ...args ), https://tc39.es/ecma262/#sec-math.max
JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
{
Vector<Value> coerced;
@ -172,6 +181,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
return highest;
}
// 21.3.2.25 Math.min ( ...args ), https://tc39.es/ecma262/#sec-math.min
JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
{
Vector<Value> coerced;
@ -192,6 +202,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
return lowest;
}
// 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
{
auto number = vm.argument(0).to_number(global_object);
@ -204,6 +215,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
return MathObject::floor(vm, global_object);
}
// 21.3.2.30 Math.sin ( x ), https://tc39.es/ecma262/#sec-math.sin
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
{
auto number = vm.argument(0).to_number(global_object);
@ -214,6 +226,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
return Value(::sin(number.as_double()));
}
// 21.3.2.12 Math.cos ( x ), https://tc39.es/ecma262/#sec-math.cos
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
{
auto number = vm.argument(0).to_number(global_object);
@ -224,6 +237,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
return Value(::cos(number.as_double()));
}
// 21.3.2.33 Math.tan ( x ), https://tc39.es/ecma262/#sec-math.tan
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
{
auto number = vm.argument(0).to_number(global_object);
@ -234,6 +248,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
return Value(::tan(number.as_double()));
}
// 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
{
auto base = vm.argument(0).to_number(global_object);
@ -291,6 +306,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
return Value(::pow(base.as_double(), exponent.as_double()));
}
// 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
{
auto number = vm.argument(0).to_number(global_object);
@ -301,6 +317,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
return Value(::exp(number.as_double()));
}
// 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
{
auto number = vm.argument(0).to_number(global_object);
@ -311,6 +328,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
return Value(::expm1(number.as_double()));
}
// 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
{
auto number = vm.argument(0).to_number(global_object);
@ -327,6 +345,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
return js_nan();
}
// 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
{
auto number = vm.argument(0).to_number(global_object);
@ -337,6 +356,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
return Value(__builtin_clz((unsigned)number.as_double()));
}
// 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
{
auto number = vm.argument(0).to_number(global_object);
@ -349,6 +369,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
return Value(::acos(number.as_double()));
}
// 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
{
auto number = vm.argument(0).to_number(global_object);
@ -359,6 +380,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
return Value(::acosh(number.as_double()));
}
// 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
{
auto number = vm.argument(0).to_number(global_object);
@ -369,6 +391,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
return Value(::asin(number.as_double()));
}
// 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
{
auto number = vm.argument(0).to_number(global_object);
@ -377,6 +400,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
return Value(::asinh(number.as_double()));
}
// 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
{
auto number = vm.argument(0).to_number(global_object);
@ -391,6 +415,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
return Value(::atan(number.as_double()));
}
// 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
{
auto number = vm.argument(0).to_number(global_object);
@ -401,6 +426,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
return Value(::atanh(number.as_double()));
}
// 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
{
auto number = vm.argument(0).to_number(global_object);
@ -411,6 +437,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
return Value(::log1p(number.as_double()));
}
// 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
{
auto number = vm.argument(0).to_number(global_object);
@ -419,6 +446,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
return Value(::cbrt(number.as_double()));
}
// 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
{
auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
@ -481,6 +509,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
return Value(::atan2(y.as_double(), x.as_double()));
}
// 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
{
auto number = vm.argument(0).to_number(global_object);
@ -491,6 +520,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
return Value((float)number.as_double());
}
// 21.3.2.18 Math.hypot ( ...args ), https://tc39.es/ecma262/#sec-math.hypot
JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
{
Vector<Value> coerced;
@ -522,6 +552,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
return Value(::sqrt(sum_of_squares));
}
// 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
{
auto a = vm.argument(0).to_u32(global_object);
@ -533,6 +564,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
return Value(static_cast<i32>(a * b));
}
// 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
{
auto number = vm.argument(0).to_number(global_object);
@ -543,6 +575,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
return Value(::log(number.as_double()));
}
// 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
{
auto number = vm.argument(0).to_number(global_object);
@ -553,6 +586,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
return Value(::log2(number.as_double()));
}
// 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
{
auto number = vm.argument(0).to_number(global_object);
@ -563,6 +597,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
return Value(::log10(number.as_double()));
}
// 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
{
auto number = vm.argument(0).to_number(global_object);
@ -573,6 +608,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
return Value(::sinh(number.as_double()));
}
// 21.3.2.13 Math.cosh ( x ), https://tc39.es/ecma262/#sec-math.cosh
JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
{
auto number = vm.argument(0).to_number(global_object);
@ -583,6 +619,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
return Value(::cosh(number.as_double()));
}
// 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
{
auto number = vm.argument(0).to_number(global_object);