1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-28 01:07:44 +00:00

AK: Make RefPtr, NonnullRefPtr, WeakPtr thread safe

This makes most operations thread safe, especially so that they
can safely be used in the Kernel. This includes obtaining a strong
reference from a weak reference, which now requires an explicit
call to WeakPtr::strong_ref(). Another major change is that
Weakable::make_weak_ref() may require the explicit target type.
Previously we used reinterpret_cast in WeakPtr, assuming that it
can be properly converted. But WeakPtr does not necessarily have
the knowledge to be able to do this. Instead, we now ask the class
itself to deliver a WeakPtr to the type that we want.

Also, WeakLink is no longer specific to a target type. The reason
for this is that we want to be able to safely convert e.g. WeakPtr<T>
to WeakPtr<U>, and before this we just reinterpret_cast the internal
WeakLink<T> to WeakLink<U>, which is a bold assumption that it would
actually produce the correct code. Instead, WeakLink now operates
on just a raw pointer and we only make those constructors/operators
available if we can verify that it can be safely cast.

In order to guarantee thread safety, we now use the least significant
bit in the pointer for locking purposes. This also means that only
properly aligned pointers can be used.
This commit is contained in:
Tom 2020-09-29 16:26:13 -06:00 committed by Andreas Kling
parent 3c1ef744f6
commit 75f61fe3d9
50 changed files with 819 additions and 322 deletions

View file

@ -31,82 +31,209 @@
namespace AK {
template<typename T>
class OwnPtr;
template<typename T>
class WeakPtr {
friend class Weakable<T>;
template<typename U>
friend class Weakable;
public:
WeakPtr() { }
WeakPtr(std::nullptr_t) { }
template<typename U>
WeakPtr(WeakPtr<U>&& other)
: m_link(reinterpret_cast<WeakLink<T>*>(other.take_link().ptr()))
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr(const WeakPtr<U>& other)
: m_link(other.m_link)
{
}
template<typename U>
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr(WeakPtr<U>&& other)
: m_link(other.take_link())
{
}
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr& operator=(WeakPtr<U>&& other)
{
m_link = reinterpret_cast<WeakLink<T>*>(other.take_link().ptr());
m_link = other.take_link();
return *this;
}
operator bool() const { return ptr(); }
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr& operator=(const WeakPtr<U>& other)
{
if ((const void*)this != (const void*)&other)
m_link = other.m_link;
return *this;
}
T* ptr() { return m_link ? m_link->ptr() : nullptr; }
const T* ptr() const { return m_link ? m_link->ptr() : nullptr; }
WeakPtr& operator=(std::nullptr_t)
{
clear();
return *this;
}
T* operator->() { return ptr(); }
const T* operator->() const { return ptr(); }
T& operator*() { return *ptr(); }
const T& operator*() const { return *ptr(); }
operator const T*() const { return ptr(); }
operator T*() { return ptr(); }
bool is_null() const { return !m_link || !m_link->ptr(); }
void clear() { m_link = nullptr; }
RefPtr<WeakLink<T>> take_link() { return move(m_link); }
bool operator==(const OwnPtr<T>& other) const { return ptr() == other.ptr(); }
private:
WeakPtr(RefPtr<WeakLink<T>> link)
: m_link(move(link))
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr(const U& object)
: m_link(object.template make_weak_ptr<U>().take_link())
{
}
RefPtr<WeakLink<T>> m_link;
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr(const U* object)
{
if (object)
m_link = object->template make_weak_ptr<U>().take_link();
}
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr(const RefPtr<U>& object)
{
object.do_while_locked([&](U* obj) {
if (obj)
obj->template make_weak_ptr<U>().take_link();
});
}
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr(const NonnullRefPtr<U>& object)
{
object.do_while_locked([&](U* obj) {
if (obj)
obj->template make_weak_ptr<U>().take_link();
});
}
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr& operator=(const U& object)
{
m_link = object.template make_weak_ptr<U>().take_link();
return *this;
}
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr& operator=(const U* object)
{
if (object)
m_link = object->template make_weak_ptr<U>().take_link();
else
m_link = nullptr;
return *this;
}
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr& operator=(const RefPtr<U>& object)
{
object.do_while_locked([&](U* obj) {
if (obj)
m_link = obj->template make_weak_ptr<U>().take_link();
else
m_link = nullptr;
});
return *this;
}
template<typename U, typename EnableIf<IsBaseOf<T, U>::value>::Type* = nullptr>
WeakPtr& operator=(const NonnullRefPtr<U>& object)
{
object.do_while_locked([&](U* obj) {
if (obj)
m_link = obj->template make_weak_ptr<U>().take_link();
else
m_link = nullptr;
});
return *this;
}
RefPtr<T> strong_ref() const
{
// This only works with RefCounted objects, but it is the only
// safe way to get a strong reference from a WeakPtr. Any code
// that uses objects not derived from RefCounted will have to
// use unsafe_ptr(), but as the name suggests, it is not safe...
RefPtr<T> ref;
// Using do_while_locked protects against a race with clear()!
m_link.do_while_locked([&](WeakLink* link) {
if (link)
ref = link->template strong_ref<T>();
});
return ref;
}
#ifndef KERNEL
// A lot of user mode code is single-threaded. But for kernel mode code
// this is generally not true as everything is multi-threaded. So make
// these shortcuts and aliases only available to non-kernel code.
T* ptr() const { return unsafe_ptr(); }
T* operator->() { return unsafe_ptr(); }
const T* operator->() const { return unsafe_ptr(); }
operator const T*() const { return unsafe_ptr(); }
operator T*() { return unsafe_ptr(); }
#endif
T* unsafe_ptr() const
{
T* ptr = nullptr;
m_link.do_while_locked([&](WeakLink* link) {
if (link)
ptr = link->unsafe_ptr<T>();
});
return ptr;
}
operator bool() const { return m_link ? !m_link->is_null() : false; }
bool is_null() const { return !m_link || m_link->is_null(); }
void clear() { m_link = nullptr; }
RefPtr<WeakLink> take_link() { return move(m_link); }
private:
WeakPtr(const RefPtr<WeakLink>& link)
: m_link(link)
{
}
RefPtr<WeakLink> m_link;
};
template<typename T>
inline WeakPtr<T> Weakable<T>::make_weak_ptr()
template<typename U>
inline WeakPtr<U> Weakable<T>::make_weak_ptr() const
{
#ifdef DEBUG
ASSERT(!m_being_destroyed);
#endif
if (!m_link)
m_link = adopt(*new WeakLink<T>(static_cast<T&>(*this)));
return WeakPtr<T>(m_link);
if (!m_link) {
// There is a small chance that we create a new WeakLink and throw
// it away because another thread beat us to it. But the window is
// pretty small and the overhead isn't terrible.
m_link.assign_if_null(adopt(*new WeakLink(const_cast<T&>(static_cast<const T&>(*this)))));
}
return WeakPtr<U>(m_link);
}
template<typename T>
inline const LogStream& operator<<(const LogStream& stream, const WeakPtr<T>& value)
{
#ifdef KERNEL
auto ref = value.strong_ref();
return stream << ref.ptr();
#else
return stream << value.ptr();
#endif
}
template<typename T>
struct Formatter<WeakPtr<T>> : Formatter<const T*> {
void format(TypeErasedFormatParams& params, FormatBuilder& builder, const WeakPtr<T>& value)
{
#ifdef KERNEL
auto ref = value.strong_ref();
Formatter<const T*>::format(params, builder, ref.ptr());
#else
Formatter<const T*>::format(params, builder, value.ptr());
#endif
}
};