1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-27 03:17:35 +00:00

LibCrypto: Implement RSA in terms of UnsignedBigInteger

This commit also adds enough ASN.1/DER to parse RSA keys
This commit is contained in:
AnotherTest 2020-04-09 02:39:48 +04:30 committed by Andreas Kling
parent 6b742c69bd
commit 7adb93ede9
11 changed files with 1887 additions and 1 deletions

View file

@ -0,0 +1,59 @@
/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <LibCrypto/Hash/HashFunction.h>
namespace Crypto {
namespace PK {
enum class VerificationConsistency {
Consistent,
Inconsistent
};
template <typename HashFunction>
class Code {
public:
template <typename... Args>
Code(Args... args)
: m_hasher(args...)
{
}
virtual void encode(const ByteBuffer& in, ByteBuffer& out, size_t em_bits) = 0;
virtual VerificationConsistency verify(const ByteBuffer& msg, const ByteBuffer& emsg, size_t em_bits) = 0;
const HashFunction& hasher() const { return m_hasher; }
HashFunction& hasher() { return m_hasher; }
protected:
HashFunction m_hasher;
};
}
}

View file

@ -0,0 +1,179 @@
/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <LibCrypto/PK/Code/Code.h>
static constexpr u8 zeros[] { 0, 0, 0, 0, 0, 0, 0, 0 };
namespace Crypto {
namespace PK {
template <typename HashFunction, size_t SaltSize>
class EMSA_PSS : public Code<HashFunction> {
public:
template <typename... Args>
EMSA_PSS(Args... args)
: Code<HashFunction>(args...)
{
m_buffer = ByteBuffer::wrap(m_data_buffer, sizeof(m_data_buffer));
}
static constexpr auto SaltLength = SaltSize;
virtual void encode(const ByteBuffer& in, ByteBuffer& out, size_t em_bits) override
{
// FIXME: we're supposed to check if in.size() > HashFunction::input_limitation
// however, all of our current hash functions can hash unlimited blocks
auto& hash_fn = this->hasher();
hash_fn.update(in);
auto message_hash = hash_fn.digest();
auto hash_length = hash_fn.DigestSize;
auto em_length = (em_bits + 7) / 8;
u8 salt[SaltLength];
arc4random_buf(salt, SaltLength);
if (em_length < hash_length + SaltLength + 2) {
dbg() << "Ooops...encoding error";
return;
}
m_buffer.overwrite(0, zeros, 8);
m_buffer.overwrite(8, message_hash.data, HashFunction::DigestSize);
m_buffer.overwrite(8 + HashFunction::DigestSize, salt, SaltLength);
hash_fn.update(m_buffer);
auto hash = hash_fn.digest();
u8 DB_data[em_length - HashFunction::DigestSize - 1];
auto DB = ByteBuffer::wrap(DB_data, em_length - HashFunction::DigestSize - 1);
auto DB_offset = 0;
for (size_t i = 0; i < em_length - SaltLength - HashFunction::DigestSize - 2; ++i)
DB[DB_offset++] = 0;
DB[DB_offset++] = 0x01;
DB.overwrite(DB_offset, salt, SaltLength);
auto mask_length = em_length - HashFunction::DigestSize - 1;
u8 DB_mask[mask_length];
auto DB_mask_buffer = ByteBuffer::wrap(DB_mask, mask_length);
// FIXME: we should probably allow reading from u8*
auto hash_buffer = ByteBuffer::wrap(hash.data, HashFunction::DigestSize);
MGF1(hash_buffer, mask_length, DB_mask_buffer);
for (size_t i = 0; i < DB.size(); ++i)
DB_data[i] ^= DB_mask[i];
auto count = (8 - (em_length * 8 - em_bits));
DB_data[0] &= (0xff >> count) << count;
out.overwrite(0, DB.data(), DB.size());
out.overwrite(DB.size(), hash.data, hash_fn.DigestSize);
out[DB.size() + hash_fn.DigestSize] = 0xbc;
}
virtual VerificationConsistency verify(const ByteBuffer& msg, const ByteBuffer& emsg, size_t em_bits) override
{
auto& hash_fn = this->hasher();
hash_fn.update(msg);
auto message_hash = hash_fn.digest();
if (emsg.size() < HashFunction::DigestSize + SaltLength + 2)
return VerificationConsistency::Inconsistent;
if (emsg[emsg.size() - 1] != 0xbc)
return VerificationConsistency::Inconsistent;
auto mask_length = emsg.size() - HashFunction::DigestSize - 1;
auto masked_DB = emsg.slice_view(0, mask_length);
auto H = emsg.slice_view(mask_length, HashFunction::DigestSize);
auto length_to_check = 8 * emsg.size() - em_bits;
auto octet = masked_DB[0];
for (size_t i = 0; i < length_to_check; ++i)
if ((octet >> (8 - i)) & 0x01)
return VerificationConsistency::Inconsistent;
u8 DB_mask[mask_length];
auto DB_mask_buffer = ByteBuffer::wrap(DB_mask, mask_length);
MGF1(H, mask_length, DB_mask_buffer);
u8 DB[mask_length];
for (size_t i = 0; i < mask_length; ++i)
DB[i] = masked_DB[i] ^ DB_mask[i];
DB[0] &= 0xff >> (8 - length_to_check);
auto check_octets = emsg.size() - HashFunction::DigestSize - SaltLength - 2;
for (size_t i = 0; i < check_octets; ++i)
if (DB[i])
return VerificationConsistency::Inconsistent;
if (DB[check_octets + 1] != 0x01)
return VerificationConsistency::Inconsistent;
auto* salt = DB + mask_length - SaltLength;
u8 m_prime[8 + HashFunction::DigestSize + SaltLength] { 0, 0, 0, 0, 0, 0, 0, 0 };
auto m_prime_buffer = ByteBuffer::wrap(m_prime, sizeof(m_prime));
m_prime_buffer.overwrite(8, message_hash.data, HashFunction::DigestSize);
m_prime_buffer.overwrite(8 + HashFunction::DigestSize, salt, SaltLength);
hash_fn.update(m_prime_buffer);
auto H_prime = hash_fn.digest();
if (__builtin_memcmp(message_hash.data, H_prime.data, HashFunction::DigestSize))
return VerificationConsistency::Inconsistent;
return VerificationConsistency::Consistent;
}
void MGF1(const ByteBuffer& seed, size_t length, ByteBuffer& out)
{
auto& hash_fn = this->hasher();
ByteBuffer T = ByteBuffer::create_zeroed(0);
for (size_t counter = 0; counter < length / HashFunction::DigestSize - 1; ++counter) {
hash_fn.update(seed);
hash_fn.update((u8*)&counter, 4);
T.append(hash_fn.digest().data, HashFunction::DigestSize);
}
out.overwrite(0, T.data(), length);
}
private:
u8 m_data_buffer[8 + HashFunction::DigestSize + SaltLength];
ByteBuffer m_buffer;
};
}
}

View file

@ -0,0 +1,68 @@
/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/ByteBuffer.h>
#include <AK/String.h>
namespace Crypto {
namespace PK {
// FIXME: Fixing name up for grabs
template <typename PrivKeyT, typename PubKeyT>
class PKSystem {
public:
using PublicKeyType = PubKeyT;
using PrivateKeyType = PrivKeyT;
PKSystem(PublicKeyType& pubkey, PrivateKeyType& privkey)
: m_public_key(pubkey)
, m_private_key(privkey)
{
}
PKSystem()
{
}
virtual void encrypt(const ByteBuffer& in, ByteBuffer& out) = 0;
virtual void decrypt(const ByteBuffer& in, ByteBuffer& out) = 0;
virtual void sign(const ByteBuffer& in, ByteBuffer& out) = 0;
virtual void verify(const ByteBuffer& in, ByteBuffer& out) = 0;
virtual String class_name() const = 0;
virtual size_t output_size() const = 0;
protected:
PublicKeyType m_public_key;
PrivateKeyType m_private_key;
};
}
}

View file

@ -0,0 +1,303 @@
/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <LibCrypto/ASN1/ASN1.h>
#include <LibCrypto/ASN1/DER.h>
#include <LibCrypto/ASN1/PEM.h>
#include <LibCrypto/PK/RSA.h>
namespace Crypto {
namespace PK {
RSA::KeyPairType RSA::parse_rsa_key(const ByteBuffer& in)
{
// we are going to assign to at least one of these
KeyPairType keypair;
// TODO: move ASN parsing logic out
u64 t, x, y, z, tmp_oid[16];
u8 tmp_buf[4096] { 0 };
UnsignedBigInteger n, e, d;
ASN1::List pubkey_hash_oid[2], pubkey[2];
ASN1::set(pubkey_hash_oid[0], ASN1::Kind::ObjectIdentifier, tmp_oid, sizeof(tmp_oid) / sizeof(tmp_oid[0]));
ASN1::set(pubkey_hash_oid[1], ASN1::Kind::Null, nullptr, 0);
// DER is weird in that it stores pubkeys as bitstrings
// we must first extract that crap
ASN1::set(pubkey[0], ASN1::Kind::Sequence, &pubkey_hash_oid, 2);
ASN1::set(pubkey[1], ASN1::Kind::Null, nullptr, 0);
dbg() << "we were offered " << in.size() << " bytes of input";
if (der_decode_sequence(in.data(), in.size(), pubkey, 2)) {
// yay, now we have to reassemble the bitstring to a bytestring
t = 0;
y = 0;
z = 0;
x = 0;
for (; x < pubkey[1].size; ++x) {
y = (y << 1) | tmp_buf[x];
if (++z == 8) {
tmp_buf[t++] = (u8)y;
y = 0;
z = 0;
}
}
// now the buffer is correct (Sequence { Integer, Integer })
if (!der_decode_sequence_many<2>(tmp_buf, t,
ASN1::Kind::Integer, 1, &n,
ASN1::Kind::Integer, 1, &e)) {
// something was fucked up
dbg() << "bad pubkey: " << e << " in " << n;
return keypair;
}
// correct public key
keypair.public_key.set(n, e);
return keypair;
}
// could be a private key
if (!der_decode_sequence_many<1>(in.data(), in.size(),
ASN1::Kind::Integer, 1, &n)) {
// that's no key
// that's a death star
dbg() << "that's a death star";
return keypair;
}
if (n == 0) {
// it is a private key
UnsignedBigInteger zero;
if (!der_decode_sequence_many<4>(in.data(), in.size(),
ASN1::Kind::Integer, 1, &zero,
ASN1::Kind::Integer, 1, &n,
ASN1::Kind::Integer, 1, &e,
ASN1::Kind::Integer, 1, &d)) {
dbg() << "bad privkey " << n << " " << e << " " << d;
return keypair;
}
keypair.private_key.set(n, d, e);
return keypair;
}
if (n == 1) {
// multiprime key, we don't know how to deal with this
dbg() << "Unsupported key type";
return keypair;
}
// it's a broken public key
keypair.public_key.set(n, 65537);
return keypair;
}
void RSA::encrypt(const ByteBuffer& in, ByteBuffer& out)
{
dbg() << "in size: " << in.size();
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
if (!(in_integer < m_public_key.modulus())) {
dbg() << "value too large for key";
out.clear();
return;
}
auto exp = NumberTheory::ModularPower(in_integer, m_public_key.public_exponent(), m_public_key.modulus());
auto size = exp.export_data(out);
// FIXME: We should probably not do this...
if (size != out.size())
out = out.slice(out.size() - size, size);
}
void RSA::decrypt(const ByteBuffer& in, ByteBuffer& out)
{
// FIXME: Actually use the private key properly
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
auto exp = NumberTheory::ModularPower(in_integer, m_private_key.private_exponent(), m_private_key.modulus());
auto size = exp.export_data(out);
auto align = m_private_key.length();
auto aligned_size = (size + align - 1) / align * align;
for (auto i = size; i < aligned_size; ++i)
out[out.size() - i - 1] = 0; // zero the non-aligned values
out = out.slice(out.size() - aligned_size, aligned_size);
}
void RSA::sign(const ByteBuffer& in, ByteBuffer& out)
{
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
auto exp = NumberTheory::ModularPower(in_integer, m_private_key.private_exponent(), m_private_key.modulus());
auto size = exp.export_data(out);
out = out.slice(out.size() - size, size);
}
void RSA::verify(const ByteBuffer& in, ByteBuffer& out)
{
auto in_integer = UnsignedBigInteger::import_data(in.data(), in.size());
auto exp = NumberTheory::ModularPower(in_integer, m_public_key.public_exponent(), m_public_key.modulus());
auto size = exp.export_data(out);
out = out.slice(out.size() - size, size);
}
void RSA::import_private_key(const ByteBuffer& buffer, bool pem)
{
// so gods help me, I hate DER
auto decoded_buffer = pem ? decode_pem(buffer) : buffer;
auto key = parse_rsa_key(decoded_buffer);
if (!key.private_key.length()) {
dbg() << "We expected to see a private key, but we found none";
ASSERT_NOT_REACHED();
}
m_private_key = key.private_key;
}
void RSA::import_public_key(const ByteBuffer& buffer, bool pem)
{
// so gods help me, I hate DER
auto decoded_buffer = pem ? decode_pem(buffer) : buffer;
auto key = parse_rsa_key(decoded_buffer);
if (!key.public_key.length()) {
dbg() << "We expected to see a public key, but we found none";
ASSERT_NOT_REACHED();
}
m_public_key = key.public_key;
}
template <typename HashFunction>
void RSA_EMSA_PSS<HashFunction>::sign(const ByteBuffer& in, ByteBuffer& out)
{
// -- encode via EMSA_PSS
auto mod_bits = m_rsa.private_key().modulus().trimmed_length() * sizeof(u32) * 8;
u8 EM[mod_bits];
auto EM_buf = ByteBuffer::wrap(EM, mod_bits);
m_emsa_pss.encode(in, EM_buf, mod_bits - 1);
// -- sign via RSA
m_rsa.sign(EM_buf, out);
}
template <typename HashFunction>
VerificationConsistency RSA_EMSA_PSS<HashFunction>::verify(const ByteBuffer& in)
{
auto mod_bytes = m_rsa.public_key().modulus().trimmed_length() * sizeof(u32);
if (in.size() != mod_bytes)
return VerificationConsistency::Inconsistent;
u8 EM[mod_bytes];
auto EM_buf = ByteBuffer::wrap(EM, mod_bytes);
// -- verify via RSA
m_rsa.verify(in, EM_buf);
// -- verify via EMSA_PSS
return m_emsa_pss.verify(in, EM, mod_bytes * 8 - 1);
}
void RSA_PKCS1_EME::encrypt(const ByteBuffer& in, ByteBuffer& out)
{
auto mod_len = (m_public_key.modulus().trimmed_length() * sizeof(u32) * 8 + 7) / 8;
dbg() << "key size: " << mod_len;
if (in.size() > mod_len - 11) {
dbg() << "message too long :(";
out.trim(0);
return;
}
if (out.size() < mod_len) {
dbg() << "output buffer too small";
return;
}
auto ps_length = mod_len - in.size() - 3;
u8 ps[ps_length];
arc4random_buf(ps, ps_length);
u8 paddings[] { 0x00, 0x02 };
out.overwrite(0, paddings, 2);
out.overwrite(2, ps, ps_length);
out.overwrite(2 + ps_length, paddings, 1);
out.overwrite(3 + ps_length, in.data(), in.size());
out.trim(3 + ps_length + in.size()); // should be a single block
dbg() << "padded output size: " << 3 + ps_length + in.size() << " buffer size: " << out.size();
RSA::encrypt(out, out);
}
void RSA_PKCS1_EME::decrypt(const ByteBuffer& in, ByteBuffer& out)
{
auto mod_len = (m_public_key.modulus().trimmed_length() * sizeof(u32) * 8 + 7) / 8;
if (in.size() != mod_len) {
dbg() << "decryption error: wrong amount of data: " << in.size();
out.trim(0);
return;
}
RSA::decrypt(in, out);
if (out.size() < RSA::output_size()) {
dbg() << "decryption error: not enough data after decryption: " << out.size();
out.trim(0);
return;
}
if (out[0] != 0x00) {
dbg() << "invalid padding byte 0 : " << out[0];
return;
}
if (out[1] != 0x02) {
dbg() << "invalid padding byte 1" << out[1];
return;
}
size_t offset = 2;
while (offset < out.size() && out[offset])
++offset;
if (offset == out.size()) {
dbg() << "garbage data, no zero to split padding";
return;
}
++offset;
if (offset - 3 < 8) {
dbg() << "PS too small";
return;
}
out = out.slice(offset, out.size() - offset);
}
void RSA_PKCS1_EME::sign(const ByteBuffer&, ByteBuffer&)
{
dbg() << "FIXME: RSA_PKCS_EME::sign";
}
void RSA_PKCS1_EME::verify(const ByteBuffer&, ByteBuffer&)
{
dbg() << "FIXME: RSA_PKCS_EME::verify";
}
}
}

View file

@ -0,0 +1,234 @@
/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Vector.h>
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
#include <LibCrypto/PK/Code/EMSA_PSS.h>
#include <LibCrypto/PK/PK.h>
namespace Crypto {
namespace PK {
template <typename Integer = u64>
class RSAPublicKey {
public:
RSAPublicKey(const Integer& n, const Integer& e)
: m_modulus(n)
, m_public_exponent(e)
{
}
RSAPublicKey()
: m_modulus(0)
, m_public_exponent(0)
{
}
//--stuff it should do
const Integer& modulus() const { return m_modulus; }
const Integer& public_exponent() const { return m_public_exponent; }
size_t length() const { return m_length; }
void set_length(size_t length) { m_length = length; }
void set(const Integer& n, const Integer& e)
{
m_modulus = n;
m_public_exponent = e;
m_length = (n.trimmed_length() * sizeof(u32));
}
private:
Integer m_modulus;
Integer m_public_exponent;
size_t m_length { 0 };
};
template <typename Integer = UnsignedBigInteger>
class RSAPrivateKey {
public:
RSAPrivateKey(const Integer& n, const Integer& d, const Integer& e)
: m_modulus(n)
, m_private_exponent(d)
, m_public_exponent(e)
{
}
RSAPrivateKey()
{
}
//--stuff it should do
const Integer& modulus() const { return m_modulus; }
const Integer& private_exponent() const { return m_private_exponent; }
const Integer& public_exponent() const { return m_public_exponent; }
size_t length() const { return m_length; }
void set_length(size_t length) { m_length = length; }
void set(const Integer& n, const Integer& d, const Integer& e)
{
m_modulus = n;
m_private_exponent = d;
m_public_exponent = e;
m_length = (n.length() * sizeof(u32));
}
private:
Integer m_modulus;
Integer m_private_exponent;
Integer m_public_exponent;
size_t m_length { 0 };
};
template <typename PubKey, typename PrivKey>
struct RSAKeyPair {
PubKey public_key;
PrivKey private_key;
};
using IntegerType = UnsignedBigInteger;
class RSA : public PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>> {
template <typename T>
friend class RSA_EMSA_PSS;
public:
using KeyPairType = RSAKeyPair<PublicKeyType, PrivateKeyType>;
static KeyPairType parse_rsa_key(const ByteBuffer&);
static KeyPairType generate_key_pair(size_t bits = 256)
{
IntegerType e { 65537 }; // :P
IntegerType p, q;
IntegerType lambda;
do {
p = NumberTheory::random_big_prime(bits / 2);
q = NumberTheory::random_big_prime(bits / 2);
lambda = NumberTheory::LCM(p.sub(1), q.sub(1));
dbg() << "checking combination p=" << p << ", q=" << q << ", lambda=" << lambda.length();
} while (!(NumberTheory::GCD(e, lambda) == 1));
auto n = p.multiply(q);
auto d = NumberTheory::ModularInverse(e, lambda);
dbg() << "Your keys are Pub{n=" << n << ", e=" << e << "} and Priv{n=" << n << ", d=" << d << "}";
RSAKeyPair<PublicKeyType, PrivateKeyType> keys {
{ n, e },
{ n, d, e }
};
keys.public_key.set_length(bits / 2 / 8);
keys.private_key.set_length(bits / 2 / 8);
return keys;
}
RSA(IntegerType n, IntegerType d, IntegerType e)
{
m_public_key.set(n, e);
m_private_key.set(n, d, e);
}
RSA(PublicKeyType& pubkey, PrivateKeyType& privkey)
: PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>>(pubkey, privkey)
{
}
RSA(const ByteBuffer& publicKeyPEM, const ByteBuffer& privateKeyPEM)
{
import_public_key(publicKeyPEM);
import_private_key(privateKeyPEM);
}
RSA(const StringView& privKeyPEM)
{
import_private_key(ByteBuffer::wrap(privKeyPEM.characters_without_null_termination(), privKeyPEM.length()));
m_public_key.set(m_private_key.modulus(), m_private_key.public_exponent());
}
// create our own keys
RSA()
{
auto pair = generate_key_pair();
m_public_key = pair.public_key;
m_private_key = pair.private_key;
}
virtual void encrypt(const ByteBuffer& in, ByteBuffer& out) override;
virtual void decrypt(const ByteBuffer& in, ByteBuffer& out) override;
virtual void sign(const ByteBuffer& in, ByteBuffer& out) override;
virtual void verify(const ByteBuffer& in, ByteBuffer& out) override;
virtual String class_name() const override { return "RSA"; }
virtual size_t output_size() const override { return m_public_key.length(); }
void import_public_key(const ByteBuffer& buffer, bool pem = true);
void import_private_key(const ByteBuffer& buffer, bool pem = true);
const PrivateKeyType& private_key() const { return m_private_key; }
const PublicKeyType& public_key() const { return m_public_key; }
};
template <typename HashFunction>
class RSA_EMSA_PSS {
public:
RSA_EMSA_PSS(RSA& rsa)
: m_rsa(rsa)
{
}
void sign(const ByteBuffer& in, ByteBuffer& out);
VerificationConsistency verify(const ByteBuffer& in);
private:
EMSA_PSS<HashFunction, HashFunction::DigestSize> m_emsa_pss;
RSA m_rsa;
};
class RSA_PKCS1_EME : public RSA {
public:
// forward all constructions to RSA
template <typename... Args>
RSA_PKCS1_EME(Args... args)
: RSA(args...)
{
}
~RSA_PKCS1_EME() {}
virtual void encrypt(const ByteBuffer& in, ByteBuffer& out) override;
virtual void decrypt(const ByteBuffer& in, ByteBuffer& out) override;
virtual void sign(const ByteBuffer&, ByteBuffer&) override;
virtual void verify(const ByteBuffer&, ByteBuffer&) override;
virtual String class_name() const override { return "RSA_PKCS1-EME"; }
virtual size_t output_size() const override { return m_public_key.length(); }
};
}
}