mirror of
https://github.com/RGBCube/serenity
synced 2025-05-31 12:28:12 +00:00
Everywhere: Move global Kernel pattern code to Kernel/Library directory
This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow, UserOrKernelBuffer and ScopedCritical classes being moved to the Kernel/Library subdirectory. Also, move the panic and assertions handling code to that directory.
This commit is contained in:
parent
f1cbfc5a6e
commit
7c0540a229
193 changed files with 238 additions and 240 deletions
265
Kernel/Library/IOWindow.cpp
Normal file
265
Kernel/Library/IOWindow.cpp
Normal file
|
@ -0,0 +1,265 @@
|
|||
/*
|
||||
* Copyright (c) 2022, Liav A. <liavalb@hotmail.co.il>
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
*/
|
||||
|
||||
#include <Kernel/Bus/PCI/API.h>
|
||||
#include <Kernel/Bus/PCI/Definitions.h>
|
||||
#include <Kernel/Library/IOWindow.h>
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
#if ARCH(X86_64)
|
||||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_io_space(IOAddress address, u64 space_length)
|
||||
{
|
||||
VERIFY(!Checked<u64>::addition_would_overflow(address.get(), space_length));
|
||||
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(address.get(), space_length)));
|
||||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
|
||||
}
|
||||
|
||||
IOWindow::IOWindow(NonnullOwnPtr<IOAddressData> io_range)
|
||||
: m_space_type(SpaceType::IO)
|
||||
, m_io_range(move(io_range))
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset, u64 space_length)
|
||||
{
|
||||
#if ARCH(X86_64)
|
||||
if (m_space_type == SpaceType::IO) {
|
||||
VERIFY(m_io_range);
|
||||
if (Checked<u64>::addition_would_overflow(m_io_range->address(), space_length))
|
||||
return Error::from_errno(EOVERFLOW);
|
||||
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData(as_io_address().offset(offset).get(), space_length)));
|
||||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
|
||||
}
|
||||
#endif
|
||||
VERIFY(space_type() == SpaceType::Memory);
|
||||
VERIFY(m_memory_mapped_range);
|
||||
|
||||
if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get(), offset))
|
||||
return Error::from_errno(EOVERFLOW);
|
||||
if (Checked<u64>::addition_would_overflow(m_memory_mapped_range->paddr.get() + offset, space_length))
|
||||
return Error::from_errno(EOVERFLOW);
|
||||
|
||||
auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(m_memory_mapped_range->paddr.offset(offset), space_length, Memory::Region::Access::ReadWrite));
|
||||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
|
||||
}
|
||||
|
||||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_from_io_window_with_offset(u64 offset)
|
||||
{
|
||||
|
||||
#if ARCH(X86_64)
|
||||
if (m_space_type == SpaceType::IO) {
|
||||
VERIFY(m_io_range);
|
||||
VERIFY(m_io_range->space_length() >= offset);
|
||||
return create_from_io_window_with_offset(offset, m_io_range->space_length() - offset);
|
||||
}
|
||||
#endif
|
||||
VERIFY(space_type() == SpaceType::Memory);
|
||||
VERIFY(m_memory_mapped_range);
|
||||
VERIFY(m_memory_mapped_range->length >= offset);
|
||||
return create_from_io_window_with_offset(offset, m_memory_mapped_range->length - offset);
|
||||
}
|
||||
|
||||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar, u64 space_length)
|
||||
{
|
||||
u64 pci_bar_value = PCI::get_BAR(pci_device_identifier, pci_bar);
|
||||
auto pci_bar_space_type = PCI::get_BAR_space_type(pci_bar_value);
|
||||
if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace) {
|
||||
// FIXME: In theory, BAR5 cannot be assigned to 64 bit as it is the last one...
|
||||
// however, there might be 64 bit BAR5 for real bare metal hardware, so remove this
|
||||
// if it makes a problem.
|
||||
if (pci_bar == PCI::HeaderType0BaseRegister::BAR5) {
|
||||
return Error::from_errno(EINVAL);
|
||||
}
|
||||
u64 next_pci_bar_value = PCI::get_BAR(pci_device_identifier, static_cast<PCI::HeaderType0BaseRegister>(to_underlying(pci_bar) + 1));
|
||||
pci_bar_value |= next_pci_bar_value << 32;
|
||||
}
|
||||
|
||||
auto pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
|
||||
if (pci_bar_space_size < space_length)
|
||||
return Error::from_errno(EIO);
|
||||
|
||||
if (pci_bar_space_type == PCI::BARSpaceType::IOSpace) {
|
||||
#if ARCH(X86_64)
|
||||
if (Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
|
||||
return Error::from_errno(EOVERFLOW);
|
||||
auto io_address_range = TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOAddressData((pci_bar_value & 0xfffffffc), space_length)));
|
||||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(io_address_range))));
|
||||
#else
|
||||
// Note: For non-x86 platforms, IO PCI BARs are simply not useable.
|
||||
return Error::from_errno(ENOTSUP);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (pci_bar_space_type == PCI::BARSpaceType::Memory32BitSpace && Checked<u32>::addition_would_overflow(pci_bar_value, space_length))
|
||||
return Error::from_errno(EOVERFLOW);
|
||||
if (pci_bar_space_type == PCI::BARSpaceType::Memory16BitSpace && Checked<u16>::addition_would_overflow(pci_bar_value, space_length))
|
||||
return Error::from_errno(EOVERFLOW);
|
||||
if (pci_bar_space_type == PCI::BARSpaceType::Memory64BitSpace && Checked<u64>::addition_would_overflow(pci_bar_value, space_length))
|
||||
return Error::from_errno(EOVERFLOW);
|
||||
auto memory_mapped_range = TRY(Memory::adopt_new_nonnull_own_typed_mapping<u8 volatile>(PhysicalAddress(pci_bar_value & PCI::bar_address_mask), space_length, Memory::Region::Access::ReadWrite));
|
||||
return TRY(adopt_nonnull_own_or_enomem(new (nothrow) IOWindow(move(memory_mapped_range))));
|
||||
}
|
||||
|
||||
ErrorOr<NonnullOwnPtr<IOWindow>> IOWindow::create_for_pci_device_bar(PCI::DeviceIdentifier const& pci_device_identifier, PCI::HeaderType0BaseRegister pci_bar)
|
||||
{
|
||||
u64 pci_bar_space_size = PCI::get_BAR_space_size(pci_device_identifier, pci_bar);
|
||||
return create_for_pci_device_bar(pci_device_identifier, pci_bar, pci_bar_space_size);
|
||||
}
|
||||
|
||||
IOWindow::IOWindow(NonnullOwnPtr<Memory::TypedMapping<u8 volatile>> memory_mapped_range)
|
||||
: m_space_type(SpaceType::Memory)
|
||||
, m_memory_mapped_range(move(memory_mapped_range))
|
||||
{
|
||||
}
|
||||
|
||||
IOWindow::~IOWindow() = default;
|
||||
|
||||
bool IOWindow::is_access_aligned(u64 offset, size_t byte_size_access) const
|
||||
{
|
||||
return (offset % byte_size_access) == 0;
|
||||
}
|
||||
|
||||
bool IOWindow::is_access_in_range(u64 offset, size_t byte_size_access) const
|
||||
{
|
||||
if (Checked<u64>::addition_would_overflow(offset, byte_size_access))
|
||||
return false;
|
||||
#if ARCH(X86_64)
|
||||
if (m_space_type == SpaceType::IO) {
|
||||
VERIFY(m_io_range);
|
||||
VERIFY(!Checked<u64>::addition_would_overflow(m_io_range->address(), m_io_range->space_length()));
|
||||
// To understand how we treat IO address space with the corresponding calculation, the Intel Software Developer manual
|
||||
// helps us to understand the layout of the IO address space -
|
||||
//
|
||||
// Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture, 16.3 I/O ADDRESS SPACE, page 16-1 wrote:
|
||||
// Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port.
|
||||
// In this manner, the processor can transfer 8, 16, or 32 bits to or from a device in the I/O address space.
|
||||
// Like words in memory, 16-bit ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle.
|
||||
// Likewise, 32-bit ports should be aligned to addresses that are multiples of four (0, 4, 8, ...).
|
||||
// The processor supports data transfers to unaligned ports, but there is a performance penalty because one or more
|
||||
// extra bus cycle must be used.
|
||||
return (m_io_range->address() + m_io_range->space_length()) >= (offset + byte_size_access);
|
||||
}
|
||||
#endif
|
||||
VERIFY(space_type() == SpaceType::Memory);
|
||||
VERIFY(m_memory_mapped_range);
|
||||
VERIFY(!Checked<u64>::addition_would_overflow(m_memory_mapped_range->offset, m_memory_mapped_range->length));
|
||||
return (m_memory_mapped_range->offset + m_memory_mapped_range->length) >= (offset + byte_size_access);
|
||||
}
|
||||
|
||||
u8 IOWindow::read8(u64 offset)
|
||||
{
|
||||
VERIFY(is_access_in_range(offset, sizeof(u8)));
|
||||
u8 data { 0 };
|
||||
in<u8>(offset, data);
|
||||
return data;
|
||||
}
|
||||
u16 IOWindow::read16(u64 offset)
|
||||
{
|
||||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||||
// for memory mapped IO access, it should always be considered a bug.
|
||||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||||
// is possible but there's a performance penalty.
|
||||
VERIFY(is_access_in_range(offset, sizeof(u16)));
|
||||
VERIFY(is_access_aligned(offset, sizeof(u16)));
|
||||
u16 data { 0 };
|
||||
in<u16>(offset, data);
|
||||
return data;
|
||||
}
|
||||
u32 IOWindow::read32(u64 offset)
|
||||
{
|
||||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||||
// for memory mapped IO access, it should always be considered a bug.
|
||||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||||
// is possible but there's a performance penalty.
|
||||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||||
VERIFY(is_access_aligned(offset, sizeof(u32)));
|
||||
u32 data { 0 };
|
||||
in<u32>(offset, data);
|
||||
return data;
|
||||
}
|
||||
|
||||
void IOWindow::write8(u64 offset, u8 data)
|
||||
{
|
||||
VERIFY(is_access_in_range(offset, sizeof(u8)));
|
||||
out<u8>(offset, data);
|
||||
}
|
||||
void IOWindow::write16(u64 offset, u16 data)
|
||||
{
|
||||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||||
// for memory mapped IO access, it should always be considered a bug.
|
||||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||||
// is possible but there's a performance penalty.
|
||||
VERIFY(is_access_in_range(offset, sizeof(u16)));
|
||||
VERIFY(is_access_aligned(offset, sizeof(u16)));
|
||||
out<u16>(offset, data);
|
||||
}
|
||||
void IOWindow::write32(u64 offset, u32 data)
|
||||
{
|
||||
// Note: Although it might be OK to allow unaligned access on regular memory,
|
||||
// for memory mapped IO access, it should always be considered a bug.
|
||||
// The same goes for port mapped IO access, because in x86 unaligned access to ports
|
||||
// is possible but there's a performance penalty.
|
||||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||||
VERIFY(is_access_aligned(offset, sizeof(u32)));
|
||||
out<u32>(offset, data);
|
||||
}
|
||||
|
||||
void IOWindow::write32_unaligned(u64 offset, u32 data)
|
||||
{
|
||||
// Note: We only verify that we access IO in the expected range.
|
||||
// Note: for port mapped IO access, because in x86 unaligned access to ports
|
||||
// is possible but there's a performance penalty, we can still allow that to happen.
|
||||
// However, it should be noted that most cases should not use unaligned access
|
||||
// to hardware IO, so this is a valid case in emulators or hypervisors only.
|
||||
// Note: Using this for memory mapped IO will fail for unaligned access, because
|
||||
// there's no valid use case for it (yet).
|
||||
VERIFY(space_type() != SpaceType::Memory);
|
||||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||||
out<u32>(offset, data);
|
||||
}
|
||||
|
||||
u32 IOWindow::read32_unaligned(u64 offset)
|
||||
{
|
||||
// Note: We only verify that we access IO in the expected range.
|
||||
// Note: for port mapped IO access, because in x86 unaligned access to ports
|
||||
// is possible but there's a performance penalty, we can still allow that to happen.
|
||||
// However, it should be noted that most cases should not use unaligned access
|
||||
// to hardware IO, so this is a valid case in emulators or hypervisors only.
|
||||
// Note: Using this for memory mapped IO will fail for unaligned access, because
|
||||
// there's no valid use case for it (yet).
|
||||
VERIFY(space_type() != SpaceType::Memory);
|
||||
VERIFY(is_access_in_range(offset, sizeof(u32)));
|
||||
u32 data { 0 };
|
||||
in<u32>(offset, data);
|
||||
return data;
|
||||
}
|
||||
|
||||
PhysicalAddress IOWindow::as_physical_memory_address() const
|
||||
{
|
||||
VERIFY(space_type() == SpaceType::Memory);
|
||||
VERIFY(m_memory_mapped_range);
|
||||
return m_memory_mapped_range->paddr;
|
||||
}
|
||||
|
||||
u8 volatile* IOWindow::as_memory_address_pointer()
|
||||
{
|
||||
VERIFY(space_type() == SpaceType::Memory);
|
||||
VERIFY(m_memory_mapped_range);
|
||||
return m_memory_mapped_range->ptr();
|
||||
}
|
||||
|
||||
#if ARCH(X86_64)
|
||||
IOAddress IOWindow::as_io_address() const
|
||||
{
|
||||
VERIFY(space_type() == SpaceType::IO);
|
||||
VERIFY(m_io_range);
|
||||
return IOAddress(m_io_range->address());
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue