1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-27 04:47:35 +00:00

Kernel: Run clang-format on files

Let's rip off the band-aid
This commit is contained in:
Shannon Booth 2020-03-22 13:12:45 +13:00 committed by Andreas Kling
parent d0629d0a8c
commit 81adefef27
25 changed files with 2992 additions and 2995 deletions

View file

@ -29,70 +29,70 @@
namespace Kernel {
namespace ACPI {
void DynamicParser::initialize(PhysicalAddress rsdp)
{
if (!StaticParser::is_initialized()) {
new DynamicParser(rsdp);
}
void DynamicParser::initialize(PhysicalAddress rsdp)
{
if (!StaticParser::is_initialized()) {
new DynamicParser(rsdp);
}
void DynamicParser::initialize_without_rsdp()
{
if (!StaticParser::is_initialized()) {
new DynamicParser();
}
}
void DynamicParser::initialize_without_rsdp()
{
if (!StaticParser::is_initialized()) {
new DynamicParser();
}
}
DynamicParser::DynamicParser()
: IRQHandler(9)
, StaticParser()
DynamicParser::DynamicParser()
: IRQHandler(9)
, StaticParser()
{
klog() << "ACPI: Dynamic Parsing Enabled, Can parse AML";
}
DynamicParser::DynamicParser(PhysicalAddress rsdp)
: IRQHandler(9)
, StaticParser(rsdp)
{
klog() << "ACPI: Dynamic Parsing Enabled, Can parse AML";
}
{
klog() << "ACPI: Dynamic Parsing Enabled, Can parse AML";
}
DynamicParser::DynamicParser(PhysicalAddress rsdp)
: IRQHandler(9)
, StaticParser(rsdp)
{
klog() << "ACPI: Dynamic Parsing Enabled, Can parse AML";
}
void DynamicParser::handle_irq(const RegisterState&)
{
// FIXME: Implement IRQ handling of ACPI signals!
ASSERT_NOT_REACHED();
}
void DynamicParser::handle_irq(const RegisterState&)
{
// FIXME: Implement IRQ handling of ACPI signals!
ASSERT_NOT_REACHED();
}
void DynamicParser::enable_aml_interpretation()
{
// FIXME: Implement AML Interpretation
ASSERT_NOT_REACHED();
}
void DynamicParser::enable_aml_interpretation(File&)
{
// FIXME: Implement AML Interpretation
ASSERT_NOT_REACHED();
}
void DynamicParser::enable_aml_interpretation(u8*, u32)
{
// FIXME: Implement AML Interpretation
ASSERT_NOT_REACHED();
}
void DynamicParser::disable_aml_interpretation()
{
// FIXME: Implement AML Interpretation
ASSERT_NOT_REACHED();
}
void DynamicParser::try_acpi_shutdown()
{
// FIXME: Implement AML Interpretation to perform ACPI shutdown
ASSERT_NOT_REACHED();
}
void DynamicParser::enable_aml_interpretation()
{
// FIXME: Implement AML Interpretation
ASSERT_NOT_REACHED();
}
void DynamicParser::enable_aml_interpretation(File&)
{
// FIXME: Implement AML Interpretation
ASSERT_NOT_REACHED();
}
void DynamicParser::enable_aml_interpretation(u8*, u32)
{
// FIXME: Implement AML Interpretation
ASSERT_NOT_REACHED();
}
void DynamicParser::disable_aml_interpretation()
{
// FIXME: Implement AML Interpretation
ASSERT_NOT_REACHED();
}
void DynamicParser::try_acpi_shutdown()
{
// FIXME: Implement AML Interpretation to perform ACPI shutdown
ASSERT_NOT_REACHED();
}
void DynamicParser::build_namespace()
{
// FIXME: Implement AML Interpretation to build the ACPI namespace
ASSERT_NOT_REACHED();
}
void DynamicParser::build_namespace()
{
// FIXME: Implement AML Interpretation to build the ACPI namespace
ASSERT_NOT_REACHED();
}
}
}

View file

@ -35,30 +35,30 @@
namespace Kernel {
namespace ACPI {
class DynamicParser final : public IRQHandler
, StaticParser {
public:
static void initialize(PhysicalAddress rsdp);
static void initialize_without_rsdp();
class DynamicParser final : public IRQHandler
, StaticParser {
public:
static void initialize(PhysicalAddress rsdp);
static void initialize_without_rsdp();
virtual void enable_aml_interpretation() override;
virtual void enable_aml_interpretation(File& dsdt_file) override;
virtual void enable_aml_interpretation(u8* physical_dsdt, u32 dsdt_payload_legnth) override;
virtual void disable_aml_interpretation() override;
virtual void try_acpi_shutdown() override;
virtual bool can_shutdown() override { return true; }
virtual const char* purpose() const override { return "ACPI Parser"; }
virtual void enable_aml_interpretation() override;
virtual void enable_aml_interpretation(File& dsdt_file) override;
virtual void enable_aml_interpretation(u8* physical_dsdt, u32 dsdt_payload_legnth) override;
virtual void disable_aml_interpretation() override;
virtual void try_acpi_shutdown() override;
virtual bool can_shutdown() override { return true; }
virtual const char* purpose() const override { return "ACPI Parser"; }
protected:
DynamicParser();
explicit DynamicParser(PhysicalAddress);
protected:
DynamicParser();
explicit DynamicParser(PhysicalAddress);
private:
void build_namespace();
// ^IRQHandler
virtual void handle_irq(const RegisterState&) override;
private:
void build_namespace();
// ^IRQHandler
virtual void handle_irq(const RegisterState&) override;
OwnPtr<Region> m_acpi_namespace;
};
OwnPtr<Region> m_acpi_namespace;
};
}
}

View file

@ -28,85 +28,85 @@
namespace Kernel {
namespace ACPI {
static Parser* s_acpi_parser;
static Parser* s_acpi_parser;
Parser& Parser::the()
{
ASSERT(s_acpi_parser != nullptr);
return *s_acpi_parser;
}
Parser& Parser::the()
{
ASSERT(s_acpi_parser != nullptr);
return *s_acpi_parser;
}
void Parser::initialize_limited()
{
if (!Parser::is_initialized()) {
s_acpi_parser = new Parser(false);
}
}
bool Parser::is_initialized()
{
return (s_acpi_parser != nullptr);
}
Parser::Parser(bool usable)
{
if (usable) {
klog() << "ACPI: Setting up a functional parser";
} else {
klog() << "ACPI: Limited Initialization. Vital functions are disabled by a request";
}
s_acpi_parser = this;
}
PhysicalAddress Parser::find_table(const char*)
{
klog() << "ACPI: Requested to search for a table, Abort!";
return {};
}
void Parser::try_acpi_reboot()
{
klog() << "ACPI: Cannot invoke reboot!";
}
void Parser::try_acpi_shutdown()
{
klog() << "ACPI: Cannot invoke shutdown!";
}
void Parser::enable_aml_interpretation()
{
klog() << "ACPI: No AML Interpretation Allowed";
ASSERT_NOT_REACHED();
}
void Parser::enable_aml_interpretation(File&)
{
klog() << "ACPI: No AML Interpretation Allowed";
ASSERT_NOT_REACHED();
}
void Parser::enable_aml_interpretation(u8*, u32)
{
klog() << "ACPI: No AML Interpretation Allowed";
ASSERT_NOT_REACHED();
}
void Parser::disable_aml_interpretation()
{
klog() << "ACPI Limited: No AML Interpretation Allowed";
ASSERT_NOT_REACHED();
}
const FADTFlags::HardwareFeatures& Parser::hardware_features() const
{
klog() << "ACPI Limited: Hardware features cannot be obtained";
ASSERT_NOT_REACHED();
}
const FADTFlags::x86_Specific_Flags& Parser::x86_specific_flags() const
{
klog() << "ACPI Limited: x86 specific features cannot be obtained";
ASSERT_NOT_REACHED();
}
bool Parser::is_operable()
{
return false;
void Parser::initialize_limited()
{
if (!Parser::is_initialized()) {
s_acpi_parser = new Parser(false);
}
}
bool Parser::is_initialized()
{
return (s_acpi_parser != nullptr);
}
Parser::Parser(bool usable)
{
if (usable) {
klog() << "ACPI: Setting up a functional parser";
} else {
klog() << "ACPI: Limited Initialization. Vital functions are disabled by a request";
}
s_acpi_parser = this;
}
PhysicalAddress Parser::find_table(const char*)
{
klog() << "ACPI: Requested to search for a table, Abort!";
return {};
}
void Parser::try_acpi_reboot()
{
klog() << "ACPI: Cannot invoke reboot!";
}
void Parser::try_acpi_shutdown()
{
klog() << "ACPI: Cannot invoke shutdown!";
}
void Parser::enable_aml_interpretation()
{
klog() << "ACPI: No AML Interpretation Allowed";
ASSERT_NOT_REACHED();
}
void Parser::enable_aml_interpretation(File&)
{
klog() << "ACPI: No AML Interpretation Allowed";
ASSERT_NOT_REACHED();
}
void Parser::enable_aml_interpretation(u8*, u32)
{
klog() << "ACPI: No AML Interpretation Allowed";
ASSERT_NOT_REACHED();
}
void Parser::disable_aml_interpretation()
{
klog() << "ACPI Limited: No AML Interpretation Allowed";
ASSERT_NOT_REACHED();
}
const FADTFlags::HardwareFeatures& Parser::hardware_features() const
{
klog() << "ACPI Limited: Hardware features cannot be obtained";
ASSERT_NOT_REACHED();
}
const FADTFlags::x86_Specific_Flags& Parser::x86_specific_flags() const
{
klog() << "ACPI Limited: x86 specific features cannot be obtained";
ASSERT_NOT_REACHED();
}
bool Parser::is_operable()
{
return false;
}
}
}

View file

@ -35,448 +35,448 @@
namespace Kernel {
namespace ACPI {
void StaticParser::initialize(PhysicalAddress rsdp)
{
if (!Parser::is_initialized()) {
new StaticParser(rsdp);
}
void StaticParser::initialize(PhysicalAddress rsdp)
{
if (!Parser::is_initialized()) {
new StaticParser(rsdp);
}
void StaticParser::initialize_without_rsdp()
{
if (!Parser::is_initialized()) {
new StaticParser();
}
}
void StaticParser::initialize_without_rsdp()
{
if (!Parser::is_initialized()) {
new StaticParser();
}
}
bool StaticParser::is_initialized()
{
return Parser::is_initialized();
}
bool StaticParser::is_initialized()
{
return Parser::is_initialized();
}
void StaticParser::locate_static_data()
{
locate_main_system_description_table();
initialize_main_system_description_table();
init_fadt();
init_facs();
}
void StaticParser::locate_static_data()
{
locate_main_system_description_table();
initialize_main_system_description_table();
init_fadt();
init_facs();
}
PhysicalAddress StaticParser::find_table(const char* sig)
{
PhysicalAddress StaticParser::find_table(const char* sig)
{
#ifdef ACPI_DEBUG
dbg() << "ACPI: Calling Find Table method!";
dbg() << "ACPI: Calling Find Table method!";
#endif
for (auto p_sdt : m_sdt_pointers) {
auto region = MM.allocate_kernel_region(p_sdt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser Tables Finding", Region::Access::Read);
auto* sdt = (const Structures::SDTHeader*)region->vaddr().offset(p_sdt.offset_in_page()).as_ptr();
for (auto p_sdt : m_sdt_pointers) {
auto region = MM.allocate_kernel_region(p_sdt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser Tables Finding", Region::Access::Read);
auto* sdt = (const Structures::SDTHeader*)region->vaddr().offset(p_sdt.offset_in_page()).as_ptr();
#ifdef ACPI_DEBUG
dbg() << "ACPI: Examining Table @ P " << physical_sdt_ptr;
dbg() << "ACPI: Examining Table @ P " << physical_sdt_ptr;
#endif
if (!strncmp(sdt->sig, sig, 4)) {
if (!strncmp(sdt->sig, sig, 4)) {
#ifdef ACPI_DEBUG
dbg() << "ACPI: Found Table @ P " << physical_sdt_ptr;
dbg() << "ACPI: Found Table @ P " << physical_sdt_ptr;
#endif
return p_sdt;
}
return p_sdt;
}
return {};
}
return {};
}
void StaticParser::init_facs()
{
m_facs = find_table("FACS");
}
void StaticParser::init_facs()
{
m_facs = find_table("FACS");
}
const FADTFlags::HardwareFeatures& StaticParser::hardware_features() const
{
return m_hardware_flags;
}
const FADTFlags::x86_Specific_Flags& StaticParser::x86_specific_flags() const
{
return m_x86_specific_flags;
}
const FADTFlags::HardwareFeatures& StaticParser::hardware_features() const
{
return m_hardware_flags;
}
const FADTFlags::x86_Specific_Flags& StaticParser::x86_specific_flags() const
{
return m_x86_specific_flags;
}
void StaticParser::init_fadt()
{
klog() << "ACPI: Initializing Fixed ACPI data";
klog() << "ACPI: Searching for the Fixed ACPI Data Table";
void StaticParser::init_fadt()
{
klog() << "ACPI: Initializing Fixed ACPI data";
klog() << "ACPI: Searching for the Fixed ACPI Data Table";
m_fadt = find_table("FACP");
ASSERT(!m_fadt.is_null());
m_fadt = find_table("FACP");
ASSERT(!m_fadt.is_null());
auto checkup_region = MM.allocate_kernel_region(m_fadt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
auto* sdt = (const Structures::FADT*)checkup_region->vaddr().offset(m_fadt.offset_in_page()).as_ptr();
auto checkup_region = MM.allocate_kernel_region(m_fadt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
auto* sdt = (const Structures::FADT*)checkup_region->vaddr().offset(m_fadt.offset_in_page()).as_ptr();
#ifdef ACPI_DEBUG
dbg() << "ACPI: FADT @ V " << sdt << ", P " << (void*)fadt.as_ptr();
dbg() << "ACPI: FADT @ V " << sdt << ", P " << (void*)fadt.as_ptr();
#endif
klog() << "ACPI: Fixed ACPI data, Revision " << sdt->h.revision << ", Length " << sdt->h.length << " bytes";
klog() << "ACPI: DSDT " << PhysicalAddress(sdt->dsdt_ptr);
m_x86_specific_flags.cmos_rtc_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::CMOS_RTC_Not_Present);
m_x86_specific_flags.keyboard_8042 = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::PS2_8042);
m_x86_specific_flags.legacy_devices = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::Legacy_Devices);
m_x86_specific_flags.msi_not_supported = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::MSI_Not_Supported);
m_x86_specific_flags.vga_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::VGA_Not_Present);
klog() << "ACPI: Fixed ACPI data, Revision " << sdt->h.revision << ", Length " << sdt->h.length << " bytes";
klog() << "ACPI: DSDT " << PhysicalAddress(sdt->dsdt_ptr);
m_x86_specific_flags.cmos_rtc_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::CMOS_RTC_Not_Present);
m_x86_specific_flags.keyboard_8042 = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::PS2_8042);
m_x86_specific_flags.legacy_devices = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::Legacy_Devices);
m_x86_specific_flags.msi_not_supported = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::MSI_Not_Supported);
m_x86_specific_flags.vga_not_present = (sdt->ia_pc_boot_arch_flags & (u8)FADTFlags::IA_PC_Flags::VGA_Not_Present);
m_hardware_flags.cpu_software_sleep = (sdt->flags & (u32)FADTFlags::FeatureFlags::CPU_SW_SLP);
m_hardware_flags.docking_capability = (sdt->flags & (u32)FADTFlags::FeatureFlags::DCK_CAP);
m_hardware_flags.fix_rtc = (sdt->flags & (u32)FADTFlags::FeatureFlags::FIX_RTC);
m_hardware_flags.force_apic_cluster_model = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_CLUSTER_MODEL);
m_hardware_flags.force_apic_physical_destination_mode = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_PHYSICAL_DESTINATION_MODE);
m_hardware_flags.hardware_reduced_acpi = (sdt->flags & (u32)FADTFlags::FeatureFlags::HW_REDUCED_ACPI);
m_hardware_flags.headless = (sdt->flags & (u32)FADTFlags::FeatureFlags::HEADLESS);
m_hardware_flags.low_power_s0_idle_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::LOW_POWER_S0_IDLE_CAPABLE);
m_hardware_flags.multiprocessor_c2 = (sdt->flags & (u32)FADTFlags::FeatureFlags::P_LVL2_UP);
m_hardware_flags.pci_express_wake = (sdt->flags & (u32)FADTFlags::FeatureFlags::PCI_EXP_WAK);
m_hardware_flags.power_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::PWR_BUTTON);
m_hardware_flags.processor_c1 = (sdt->flags & (u32)FADTFlags::FeatureFlags::PROC_C1);
m_hardware_flags.remote_power_on_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::REMOTE_POWER_ON_CAPABLE);
m_hardware_flags.reset_register_supported = (sdt->flags & (u32)FADTFlags::FeatureFlags::RESET_REG_SUPPORTED);
m_hardware_flags.rtc_s4 = (sdt->flags & (u32)FADTFlags::FeatureFlags::RTC_s4);
m_hardware_flags.s4_rtc_status_valid = (sdt->flags & (u32)FADTFlags::FeatureFlags::S4_RTC_STS_VALID);
m_hardware_flags.sealed_case = (sdt->flags & (u32)FADTFlags::FeatureFlags::SEALED_CASE);
m_hardware_flags.sleep_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::SLP_BUTTON);
m_hardware_flags.timer_value_extension = (sdt->flags & (u32)FADTFlags::FeatureFlags::TMR_VAL_EXT);
m_hardware_flags.use_platform_clock = (sdt->flags & (u32)FADTFlags::FeatureFlags::USE_PLATFORM_CLOCK);
m_hardware_flags.wbinvd = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD);
m_hardware_flags.wbinvd_flush = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD_FLUSH);
}
m_hardware_flags.cpu_software_sleep = (sdt->flags & (u32)FADTFlags::FeatureFlags::CPU_SW_SLP);
m_hardware_flags.docking_capability = (sdt->flags & (u32)FADTFlags::FeatureFlags::DCK_CAP);
m_hardware_flags.fix_rtc = (sdt->flags & (u32)FADTFlags::FeatureFlags::FIX_RTC);
m_hardware_flags.force_apic_cluster_model = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_CLUSTER_MODEL);
m_hardware_flags.force_apic_physical_destination_mode = (sdt->flags & (u32)FADTFlags::FeatureFlags::FORCE_APIC_PHYSICAL_DESTINATION_MODE);
m_hardware_flags.hardware_reduced_acpi = (sdt->flags & (u32)FADTFlags::FeatureFlags::HW_REDUCED_ACPI);
m_hardware_flags.headless = (sdt->flags & (u32)FADTFlags::FeatureFlags::HEADLESS);
m_hardware_flags.low_power_s0_idle_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::LOW_POWER_S0_IDLE_CAPABLE);
m_hardware_flags.multiprocessor_c2 = (sdt->flags & (u32)FADTFlags::FeatureFlags::P_LVL2_UP);
m_hardware_flags.pci_express_wake = (sdt->flags & (u32)FADTFlags::FeatureFlags::PCI_EXP_WAK);
m_hardware_flags.power_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::PWR_BUTTON);
m_hardware_flags.processor_c1 = (sdt->flags & (u32)FADTFlags::FeatureFlags::PROC_C1);
m_hardware_flags.remote_power_on_capable = (sdt->flags & (u32)FADTFlags::FeatureFlags::REMOTE_POWER_ON_CAPABLE);
m_hardware_flags.reset_register_supported = (sdt->flags & (u32)FADTFlags::FeatureFlags::RESET_REG_SUPPORTED);
m_hardware_flags.rtc_s4 = (sdt->flags & (u32)FADTFlags::FeatureFlags::RTC_s4);
m_hardware_flags.s4_rtc_status_valid = (sdt->flags & (u32)FADTFlags::FeatureFlags::S4_RTC_STS_VALID);
m_hardware_flags.sealed_case = (sdt->flags & (u32)FADTFlags::FeatureFlags::SEALED_CASE);
m_hardware_flags.sleep_button = (sdt->flags & (u32)FADTFlags::FeatureFlags::SLP_BUTTON);
m_hardware_flags.timer_value_extension = (sdt->flags & (u32)FADTFlags::FeatureFlags::TMR_VAL_EXT);
m_hardware_flags.use_platform_clock = (sdt->flags & (u32)FADTFlags::FeatureFlags::USE_PLATFORM_CLOCK);
m_hardware_flags.wbinvd = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD);
m_hardware_flags.wbinvd_flush = (sdt->flags & (u32)FADTFlags::FeatureFlags::WBINVD_FLUSH);
}
bool StaticParser::can_reboot()
{
auto region = MM.allocate_kernel_region(m_fadt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
auto* fadt = (const Structures::FADT*)region->vaddr().offset(m_fadt.offset_in_page()).as_ptr();
if (fadt->h.revision < 2)
return false;
return m_hardware_flags.reset_register_supported;
}
bool StaticParser::can_reboot()
{
auto region = MM.allocate_kernel_region(m_fadt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
auto* fadt = (const Structures::FADT*)region->vaddr().offset(m_fadt.offset_in_page()).as_ptr();
if (fadt->h.revision < 2)
return false;
return m_hardware_flags.reset_register_supported;
}
void StaticParser::access_generic_address(const Structures::GenericAddressStructure& structure, u32 value)
{
switch (structure.address_space) {
case (u8)GenericAddressStructure::AddressSpace::SystemIO: {
IOAddress address(structure.address);
dbg() << "ACPI: Sending value 0x" << String::format("%x", value) << " to " << address;
switch (structure.access_size) {
case (u8)GenericAddressStructure::AccessSize::QWord: {
dbg() << "Trying to send QWord to IO port";
ASSERT_NOT_REACHED();
break;
}
case (u8)GenericAddressStructure::AccessSize::Undefined: {
dbg() << "ACPI Warning: Unknown access size " << structure.access_size;
ASSERT(structure.bit_width != (u8)GenericAddressStructure::BitWidth::QWord);
ASSERT(structure.bit_width != (u8)GenericAddressStructure::BitWidth::Undefined);
dbg() << "ACPI: Bit Width - " << structure.bit_width << " bits";
address.out(value, structure.bit_width);
break;
}
default:
address.out(value, (8 << (structure.access_size - 1)));
break;
}
return;
void StaticParser::access_generic_address(const Structures::GenericAddressStructure& structure, u32 value)
{
switch (structure.address_space) {
case (u8)GenericAddressStructure::AddressSpace::SystemIO: {
IOAddress address(structure.address);
dbg() << "ACPI: Sending value 0x" << String::format("%x", value) << " to " << address;
switch (structure.access_size) {
case (u8)GenericAddressStructure::AccessSize::QWord: {
dbg() << "Trying to send QWord to IO port";
ASSERT_NOT_REACHED();
break;
}
case (u8)GenericAddressStructure::AddressSpace::SystemMemory: {
auto p_reg = PhysicalAddress(structure.address);
auto p_region = MM.allocate_kernel_region(p_reg.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
dbg() << "ACPI: Sending value 0x" << String::format("%x", value) << " to " << p_reg;
switch (structure.access_size) {
case (u8)GenericAddressStructure::AccessSize::Byte: {
auto* reg = (volatile u8*)p_region->vaddr().offset(p_reg.offset_in_page()).as_ptr();
(*reg) = value;
break;
}
case (u8)GenericAddressStructure::AccessSize::Word: {
auto* reg = (volatile u16*)p_region->vaddr().offset(p_reg.offset_in_page()).as_ptr();
(*reg) = value;
break;
}
case (u8)GenericAddressStructure::AccessSize::DWord: {
auto* reg = (volatile u32*)p_region->vaddr().offset(p_reg.offset_in_page()).as_ptr();
(*reg) = value;
break;
}
case (u8)GenericAddressStructure::AccessSize::QWord: {
auto* reg = (volatile u64*)p_region->vaddr().offset(p_reg.offset_in_page()).as_ptr();
(*reg) = value;
break;
}
default:
ASSERT_NOT_REACHED();
}
return;
case (u8)GenericAddressStructure::AccessSize::Undefined: {
dbg() << "ACPI Warning: Unknown access size " << structure.access_size;
ASSERT(structure.bit_width != (u8)GenericAddressStructure::BitWidth::QWord);
ASSERT(structure.bit_width != (u8)GenericAddressStructure::BitWidth::Undefined);
dbg() << "ACPI: Bit Width - " << structure.bit_width << " bits";
address.out(value, structure.bit_width);
break;
}
case (u8)GenericAddressStructure::AddressSpace::PCIConfigurationSpace: {
// According to the ACPI specification 6.2, page 168, PCI addresses must be confined to devices on Segment group 0, bus 0.
auto pci_address = PCI::Address(0, 0, ((structure.address >> 24) & 0xFF), ((structure.address >> 16) & 0xFF));
dbg() << "ACPI: Sending value 0x" << String::format("%x", value) << " to " << pci_address;
u32 offset_in_pci_address = structure.address & 0xFFFF;
if (structure.access_size == (u8)GenericAddressStructure::AccessSize::QWord) {
dbg() << "Trying to send QWord to PCI configuration space";
ASSERT_NOT_REACHED();
}
ASSERT(structure.access_size != (u8)GenericAddressStructure::AccessSize::Undefined);
PCI::raw_access(pci_address, offset_in_pci_address, (1 << (structure.access_size - 1)), value);
return;
default:
address.out(value, (8 << (structure.access_size - 1)));
break;
}
return;
}
case (u8)GenericAddressStructure::AddressSpace::SystemMemory: {
auto p_reg = PhysicalAddress(structure.address);
auto p_region = MM.allocate_kernel_region(p_reg.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
dbg() << "ACPI: Sending value 0x" << String::format("%x", value) << " to " << p_reg;
switch (structure.access_size) {
case (u8)GenericAddressStructure::AccessSize::Byte: {
auto* reg = (volatile u8*)p_region->vaddr().offset(p_reg.offset_in_page()).as_ptr();
(*reg) = value;
break;
}
case (u8)GenericAddressStructure::AccessSize::Word: {
auto* reg = (volatile u16*)p_region->vaddr().offset(p_reg.offset_in_page()).as_ptr();
(*reg) = value;
break;
}
case (u8)GenericAddressStructure::AccessSize::DWord: {
auto* reg = (volatile u32*)p_region->vaddr().offset(p_reg.offset_in_page()).as_ptr();
(*reg) = value;
break;
}
case (u8)GenericAddressStructure::AccessSize::QWord: {
auto* reg = (volatile u64*)p_region->vaddr().offset(p_reg.offset_in_page()).as_ptr();
(*reg) = value;
break;
}
default:
ASSERT_NOT_REACHED();
}
return;
}
case (u8)GenericAddressStructure::AddressSpace::PCIConfigurationSpace: {
// According to the ACPI specification 6.2, page 168, PCI addresses must be confined to devices on Segment group 0, bus 0.
auto pci_address = PCI::Address(0, 0, ((structure.address >> 24) & 0xFF), ((structure.address >> 16) & 0xFF));
dbg() << "ACPI: Sending value 0x" << String::format("%x", value) << " to " << pci_address;
u32 offset_in_pci_address = structure.address & 0xFFFF;
if (structure.access_size == (u8)GenericAddressStructure::AccessSize::QWord) {
dbg() << "Trying to send QWord to PCI configuration space";
ASSERT_NOT_REACHED();
}
ASSERT(structure.access_size != (u8)GenericAddressStructure::AccessSize::Undefined);
PCI::raw_access(pci_address, offset_in_pci_address, (1 << (structure.access_size - 1)), value);
return;
}
default:
ASSERT_NOT_REACHED();
}
ASSERT_NOT_REACHED();
}
bool StaticParser::validate_reset_register()
{
// According to the ACPI spec 6.2, page 152, The reset register can only be located in I/O bus, PCI bus or memory-mapped.
auto region = MM.allocate_kernel_region(m_fadt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
auto* fadt = (const Structures::FADT*)region->vaddr().offset(m_fadt.offset_in_page()).as_ptr();
return (fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::PCIConfigurationSpace || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemMemory || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemIO);
bool StaticParser::validate_reset_register()
{
// According to the ACPI spec 6.2, page 152, The reset register can only be located in I/O bus, PCI bus or memory-mapped.
auto region = MM.allocate_kernel_region(m_fadt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
auto* fadt = (const Structures::FADT*)region->vaddr().offset(m_fadt.offset_in_page()).as_ptr();
return (fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::PCIConfigurationSpace || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemMemory || fadt->reset_reg.address_space == (u8)GenericAddressStructure::AddressSpace::SystemIO);
}
void StaticParser::try_acpi_reboot()
{
InterruptDisabler disabler;
if (!can_reboot()) {
klog() << "ACPI: Reboot, Not supported!";
return;
}
#ifdef ACPI_DEBUG
dbg() << "ACPI: Rebooting, Probing FADT (" << m_fadt << ")";
#endif
void StaticParser::try_acpi_reboot()
{
InterruptDisabler disabler;
if (!can_reboot()) {
klog() << "ACPI: Reboot, Not supported!";
return;
auto region = MM.allocate_kernel_region(m_fadt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
auto* fadt = (const Structures::FADT*)region->vaddr().offset(m_fadt.offset_in_page()).as_ptr();
ASSERT(validate_reset_register());
access_generic_address(fadt->reset_reg, fadt->reset_value);
for (;;)
;
}
void StaticParser::try_acpi_shutdown()
{
klog() << "ACPI: Shutdown is not supported with the current configuration, Abort!";
}
size_t StaticParser::get_table_size(PhysicalAddress table_header)
{
InterruptDisabler disabler;
#ifdef ACPI_DEBUG
dbg() << "ACPI: Checking SDT Length";
#endif
auto region = MM.allocate_kernel_region(table_header.page_base(), (PAGE_SIZE * 2), "ACPI get_table_size()", Region::Access::Read);
auto* sdt = (volatile Structures::SDTHeader*)region->vaddr().offset(table_header.offset_in_page()).as_ptr();
return sdt->length;
}
u8 StaticParser::get_table_revision(PhysicalAddress table_header)
{
InterruptDisabler disabler;
#ifdef ACPI_DEBUG
dbg() << "ACPI: Checking SDT Revision";
#endif
auto region = MM.allocate_kernel_region(table_header.page_base(), (PAGE_SIZE * 2), "ACPI get_table_revision()", Region::Access::Read);
auto* sdt = (volatile Structures::SDTHeader*)region->vaddr().offset(table_header.offset_in_page()).as_ptr();
return sdt->revision;
}
void StaticParser::initialize_main_system_description_table()
{
#ifdef ACPI_DEBUG
dbg() << "ACPI: Checking Main SDT Length to choose the correct mapping size";
#endif
ASSERT(!m_main_system_description_table.is_null());
auto length = get_table_size(m_main_system_description_table);
auto revision = get_table_revision(m_main_system_description_table);
auto main_sdt_region = MM.allocate_kernel_region(m_main_system_description_table.page_base(), PAGE_ROUND_UP(length) + PAGE_SIZE, "ACPI Static Parser Initialization", Region::Access::Read, false, true);
auto* sdt = (volatile Structures::SDTHeader*)main_sdt_region->vaddr().offset(m_main_system_description_table.offset_in_page()).as_ptr();
klog() << "ACPI: Main Description Table valid? " << StaticParsing::validate_table(const_cast<Structures::SDTHeader&>(*sdt), length);
if (m_xsdt_supported) {
volatile auto* xsdt = (volatile Structures::XSDT*)sdt;
klog() << "ACPI: Using XSDT, Enumerating tables @ " << m_main_system_description_table;
klog() << "ACPI: XSDT Revision " << revision << ", Total length - " << length;
#ifdef ACPI_DEBUG
dbg() << "ACPI: XSDT pointer @ V " << xsdt;
#endif
for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u64)); i++) {
#ifdef ACPI_DEBUG
dbg() << "ACPI: Found new table [" << i << "], @ V 0x" << String::format("%x", &xsdt->table_ptrs[i]) << " - P 0x" << String::format("%x", xsdt->table_ptrs[i]);
#endif
m_sdt_pointers.append(PhysicalAddress(xsdt->table_ptrs[i]));
}
} else {
volatile auto* rsdt = (volatile Structures::RSDT*)sdt;
klog() << "ACPI: Using RSDT, Enumerating tables @ " << m_main_system_description_table;
klog() << "ACPI: RSDT Revision " << revision << ", Total length - " << length;
#ifdef ACPI_DEBUG
dbg() << "ACPI: Rebooting, Probing FADT (" << m_fadt << ")";
dbg() << "ACPI: RSDT pointer @ V " << rsdt;
#endif
auto region = MM.allocate_kernel_region(m_fadt.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser", Region::Access::Read);
auto* fadt = (const Structures::FADT*)region->vaddr().offset(m_fadt.offset_in_page()).as_ptr();
ASSERT(validate_reset_register());
access_generic_address(fadt->reset_reg, fadt->reset_value);
for (;;)
;
for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u32)); i++) {
#ifdef ACPI_DEBUG
dbg() << "ACPI: Found new table [" << i << "], @ V 0x" << String::format("%x", &rsdt->table_ptrs[i]) << " - P 0x" << String::format("%x", rsdt->table_ptrs[i]);
#endif
m_sdt_pointers.append(PhysicalAddress(rsdt->table_ptrs[i]));
}
}
}
void StaticParser::try_acpi_shutdown()
{
klog() << "ACPI: Shutdown is not supported with the current configuration, Abort!";
}
size_t StaticParser::get_table_size(PhysicalAddress table_header)
{
InterruptDisabler disabler;
#ifdef ACPI_DEBUG
dbg() << "ACPI: Checking SDT Length";
#endif
auto region = MM.allocate_kernel_region(table_header.page_base(), (PAGE_SIZE * 2), "ACPI get_table_size()", Region::Access::Read);
auto* sdt = (volatile Structures::SDTHeader*)region->vaddr().offset(table_header.offset_in_page()).as_ptr();
return sdt->length;
}
u8 StaticParser::get_table_revision(PhysicalAddress table_header)
{
InterruptDisabler disabler;
#ifdef ACPI_DEBUG
dbg() << "ACPI: Checking SDT Revision";
#endif
auto region = MM.allocate_kernel_region(table_header.page_base(), (PAGE_SIZE * 2), "ACPI get_table_revision()", Region::Access::Read);
auto* sdt = (volatile Structures::SDTHeader*)region->vaddr().offset(table_header.offset_in_page()).as_ptr();
return sdt->revision;
}
void StaticParser::initialize_main_system_description_table()
{
#ifdef ACPI_DEBUG
dbg() << "ACPI: Checking Main SDT Length to choose the correct mapping size";
#endif
ASSERT(!m_main_system_description_table.is_null());
auto length = get_table_size(m_main_system_description_table);
auto revision = get_table_revision(m_main_system_description_table);
auto main_sdt_region = MM.allocate_kernel_region(m_main_system_description_table.page_base(), PAGE_ROUND_UP(length) + PAGE_SIZE, "ACPI Static Parser Initialization", Region::Access::Read, false, true);
auto* sdt = (volatile Structures::SDTHeader*)main_sdt_region->vaddr().offset(m_main_system_description_table.offset_in_page()).as_ptr();
klog() << "ACPI: Main Description Table valid? " << StaticParsing::validate_table(const_cast<Structures::SDTHeader&>(*sdt), length);
if (m_xsdt_supported) {
volatile auto* xsdt = (volatile Structures::XSDT*)sdt;
klog() << "ACPI: Using XSDT, Enumerating tables @ " << m_main_system_description_table;
klog() << "ACPI: XSDT Revision " << revision << ", Total length - " << length;
#ifdef ACPI_DEBUG
dbg() << "ACPI: XSDT pointer @ V " << xsdt;
#endif
for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u64)); i++) {
#ifdef ACPI_DEBUG
dbg() << "ACPI: Found new table [" << i << "], @ V 0x" << String::format("%x", &xsdt->table_ptrs[i]) << " - P 0x" << String::format("%x", xsdt->table_ptrs[i]);
#endif
m_sdt_pointers.append(PhysicalAddress(xsdt->table_ptrs[i]));
}
void StaticParser::locate_main_system_description_table()
{
auto rsdp_region = MM.allocate_kernel_region(m_rsdp.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser Initialization", Region::Access::Read, false, true);
volatile auto* rsdp = (Structures::RSDPDescriptor20*)rsdp_region->vaddr().offset(m_rsdp.offset_in_page()).as_ptr();
if (rsdp->base.revision == 0) {
m_xsdt_supported = false;
} else if (rsdp->base.revision >= 2) {
if (rsdp->xsdt_ptr != (u64) nullptr) {
m_xsdt_supported = true;
} else {
volatile auto* rsdt = (volatile Structures::RSDT*)sdt;
klog() << "ACPI: Using RSDT, Enumerating tables @ " << m_main_system_description_table;
klog() << "ACPI: RSDT Revision " << revision << ", Total length - " << length;
#ifdef ACPI_DEBUG
dbg() << "ACPI: RSDT pointer @ V " << rsdt;
#endif
for (u32 i = 0; i < ((length - sizeof(Structures::SDTHeader)) / sizeof(u32)); i++) {
#ifdef ACPI_DEBUG
dbg() << "ACPI: Found new table [" << i << "], @ V 0x" << String::format("%x", &rsdt->table_ptrs[i]) << " - P 0x" << String::format("%x", rsdt->table_ptrs[i]);
#endif
m_sdt_pointers.append(PhysicalAddress(rsdt->table_ptrs[i]));
}
}
}
void StaticParser::locate_main_system_description_table()
{
auto rsdp_region = MM.allocate_kernel_region(m_rsdp.page_base(), (PAGE_SIZE * 2), "ACPI Static Parser Initialization", Region::Access::Read, false, true);
volatile auto* rsdp = (Structures::RSDPDescriptor20*)rsdp_region->vaddr().offset(m_rsdp.offset_in_page()).as_ptr();
if (rsdp->base.revision == 0) {
m_xsdt_supported = false;
} else if (rsdp->base.revision >= 2) {
if (rsdp->xsdt_ptr != (u64) nullptr) {
m_xsdt_supported = true;
} else {
m_xsdt_supported = false;
}
}
if (!m_xsdt_supported) {
m_main_system_description_table = PhysicalAddress(rsdp->base.rsdt_ptr);
} else {
m_main_system_description_table = PhysicalAddress(rsdp->xsdt_ptr);
}
}
StaticParser::StaticParser()
: Parser(true)
, m_rsdp(StaticParsing::search_rsdp())
{
if (!m_rsdp.is_null()) {
klog() << "ACPI: Using RSDP @ " << m_rsdp;
m_operable = true;
locate_static_data();
} else {
m_operable = false;
klog() << "ACPI: Disabled, due to RSDP being absent";
}
if (!m_xsdt_supported) {
m_main_system_description_table = PhysicalAddress(rsdp->base.rsdt_ptr);
} else {
m_main_system_description_table = PhysicalAddress(rsdp->xsdt_ptr);
}
}
StaticParser::StaticParser(PhysicalAddress rsdp)
: Parser(true)
, m_rsdp(rsdp)
{
klog() << "ACPI: Using RSDP @ " << rsdp;
StaticParser::StaticParser()
: Parser(true)
, m_rsdp(StaticParsing::search_rsdp())
{
if (!m_rsdp.is_null()) {
klog() << "ACPI: Using RSDP @ " << m_rsdp;
m_operable = true;
locate_static_data();
}
PhysicalAddress StaticParsing::search_rsdp_in_ebda(u16 ebda_segment)
{
auto rsdp_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)(ebda_segment << 4))), PAGE_ROUND_UP(1024), "ACPI Static Parser RSDP Finding #1", Region::Access::Read, false, true);
char* p_rsdp_str = (char*)(PhysicalAddress(ebda_segment << 4).as_ptr());
for (char* rsdp_str = (char*)rsdp_region->vaddr().offset(offset_in_page((u32)(ebda_segment << 4))).as_ptr(); rsdp_str < (char*)(rsdp_region->vaddr().offset(offset_in_page((u32)(ebda_segment << 4))).get() + 1024); rsdp_str += 16) {
#ifdef ACPI_DEBUG
dbg() << "ACPI: Looking for RSDP in EBDA @ V " << (void*)rsdp_str << ", P " << (void*)p_rsdp_str;
#endif
if (!strncmp("RSD PTR ", rsdp_str, strlen("RSD PTR ")))
return PhysicalAddress((FlatPtr)p_rsdp_str);
p_rsdp_str += 16;
}
return {};
}
PhysicalAddress StaticParsing::search_rsdp_in_bios_area()
{
auto rsdp_region = MM.allocate_kernel_region(PhysicalAddress(0xE0000), PAGE_ROUND_UP(0xFFFFF - 0xE0000), "ACPI Static Parser RSDP Finding #2", Region::Access::Read, false, true);
char* p_rsdp_str = (char*)(PhysicalAddress(0xE0000).as_ptr());
for (char* rsdp_str = (char*)rsdp_region->vaddr().offset(offset_in_page((u32)(0xE0000))).as_ptr(); rsdp_str < (char*)(rsdp_region->vaddr().offset(offset_in_page((u32)(0xE0000))).get() + (0xFFFFF - 0xE0000)); rsdp_str += 16) {
#ifdef ACPI_DEBUG
dbg() << "ACPI: Looking for RSDP in BIOS ROM area @ V " << (void*)rsdp_str << ", P " << (void*)p_rsdp_str;
#endif
if (!strncmp("RSD PTR ", rsdp_str, strlen("RSD PTR ")))
return PhysicalAddress((FlatPtr)p_rsdp_str);
p_rsdp_str += 16;
}
return {};
}
inline bool StaticParsing::validate_table(Structures::SDTHeader& v_header, size_t length)
{
u8 checksum = 0;
auto* sdt = (u8*)&v_header;
for (size_t i = 0; i < length; i++)
checksum += sdt[i];
if (checksum == 0)
return true;
return false;
}
PhysicalAddress StaticParsing::search_rsdp()
{
PhysicalAddress rsdp;
auto region = MM.allocate_kernel_region(PhysicalAddress(0), PAGE_SIZE, "ACPI RSDP Searching", Region::Access::Read);
u16 ebda_seg = (u16) * ((uint16_t*)((region->vaddr().get() & PAGE_MASK) + 0x40e));
klog() << "ACPI: Probing EBDA, Segment 0x" << String::format("%x", ebda_seg);
rsdp = search_rsdp_in_ebda(ebda_seg);
if (!rsdp.is_null())
return rsdp;
return search_rsdp_in_bios_area();
}
PhysicalAddress StaticParsing::search_table(PhysicalAddress rsdp, const char* signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
// FIXME: Don't blindly use PAGE_SIZE here, but probe the actual length.
ASSERT(strlen(signature) == 4);
auto rsdp_region = MM.allocate_kernel_region(rsdp.page_base(), (PAGE_SIZE * 2), "ACPI Static Parsing search_table()", Region::Access::Read, false, true);
volatile auto* rsdp_ptr = (Structures::RSDPDescriptor20*)rsdp_region->vaddr().offset(rsdp.offset_in_page()).as_ptr();
if (rsdp_ptr->base.revision == 0) {
return search_table_in_rsdt(PhysicalAddress(rsdp_ptr->base.rsdt_ptr), signature);
}
if (rsdp_ptr->base.revision >= 2) {
if (rsdp_ptr->xsdt_ptr != (u64) nullptr)
return search_table_in_xsdt(PhysicalAddress(rsdp_ptr->xsdt_ptr), signature);
return search_table_in_rsdt(PhysicalAddress(rsdp_ptr->base.rsdt_ptr), signature);
}
ASSERT_NOT_REACHED();
}
PhysicalAddress StaticParsing::search_table_in_xsdt(PhysicalAddress xsdt, const char* signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
// FIXME: Don't blindly use PAGE_SIZE here, but probe the actual length.
ASSERT(strlen(signature) == 4);
auto main_sdt_region = MM.allocate_kernel_region(xsdt.page_base(), PAGE_SIZE, "ACPI Static Parsing search_table_in_xsdt()", Region::Access::Read, false, true);
auto* xsdt_ptr = (volatile Structures::XSDT*)main_sdt_region->vaddr().offset(xsdt.offset_in_page()).as_ptr();
for (u32 i = 0; i < ((xsdt_ptr->h.length - sizeof(Structures::SDTHeader)) / sizeof(u64)); i++) {
if (match_table_signature(PhysicalAddress((FlatPtr)xsdt_ptr->table_ptrs[i]), signature))
return PhysicalAddress((FlatPtr)xsdt_ptr->table_ptrs[i]);
}
return {};
}
bool StaticParsing::match_table_signature(PhysicalAddress table_header, const char* signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
// FIXME: Don't blindly use PAGE_SIZE here, but probe the actual length.
ASSERT(strlen(signature) == 4);
auto main_sdt_region = MM.allocate_kernel_region(table_header.page_base(), PAGE_SIZE, "ACPI Static Parsing match_table_signature()", Region::Access::Read, false, true);
auto* table_ptr = (volatile Structures::RSDT*)main_sdt_region->vaddr().offset(table_header.offset_in_page()).as_ptr();
return !strncmp(const_cast<const char*>(table_ptr->h.sig), signature, 4);
}
PhysicalAddress StaticParsing::search_table_in_rsdt(PhysicalAddress rsdt, const char* signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
// FIXME: Don't blindly use PAGE_SIZE here, but probe the actual length.
ASSERT(strlen(signature) == 4);
auto main_sdt_region = MM.allocate_kernel_region(rsdt.page_base(), PAGE_SIZE, "ACPI Static Parsing search_table_in_rsdt()", Region::Access::Read, false, true);
auto* rsdt_ptr = (volatile Structures::RSDT*)main_sdt_region->vaddr().offset(rsdt.offset_in_page()).as_ptr();
for (u32 i = 0; i < ((rsdt_ptr->h.length - sizeof(Structures::SDTHeader)) / sizeof(u32)); i++) {
if (match_table_signature(PhysicalAddress((FlatPtr)rsdt_ptr->table_ptrs[i]), signature))
return PhysicalAddress((FlatPtr)rsdt_ptr->table_ptrs[i]);
}
return {};
} else {
m_operable = false;
klog() << "ACPI: Disabled, due to RSDP being absent";
}
}
StaticParser::StaticParser(PhysicalAddress rsdp)
: Parser(true)
, m_rsdp(rsdp)
{
klog() << "ACPI: Using RSDP @ " << rsdp;
m_operable = true;
locate_static_data();
}
PhysicalAddress StaticParsing::search_rsdp_in_ebda(u16 ebda_segment)
{
auto rsdp_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of((u32)(ebda_segment << 4))), PAGE_ROUND_UP(1024), "ACPI Static Parser RSDP Finding #1", Region::Access::Read, false, true);
char* p_rsdp_str = (char*)(PhysicalAddress(ebda_segment << 4).as_ptr());
for (char* rsdp_str = (char*)rsdp_region->vaddr().offset(offset_in_page((u32)(ebda_segment << 4))).as_ptr(); rsdp_str < (char*)(rsdp_region->vaddr().offset(offset_in_page((u32)(ebda_segment << 4))).get() + 1024); rsdp_str += 16) {
#ifdef ACPI_DEBUG
dbg() << "ACPI: Looking for RSDP in EBDA @ V " << (void*)rsdp_str << ", P " << (void*)p_rsdp_str;
#endif
if (!strncmp("RSD PTR ", rsdp_str, strlen("RSD PTR ")))
return PhysicalAddress((FlatPtr)p_rsdp_str);
p_rsdp_str += 16;
}
return {};
}
PhysicalAddress StaticParsing::search_rsdp_in_bios_area()
{
auto rsdp_region = MM.allocate_kernel_region(PhysicalAddress(0xE0000), PAGE_ROUND_UP(0xFFFFF - 0xE0000), "ACPI Static Parser RSDP Finding #2", Region::Access::Read, false, true);
char* p_rsdp_str = (char*)(PhysicalAddress(0xE0000).as_ptr());
for (char* rsdp_str = (char*)rsdp_region->vaddr().offset(offset_in_page((u32)(0xE0000))).as_ptr(); rsdp_str < (char*)(rsdp_region->vaddr().offset(offset_in_page((u32)(0xE0000))).get() + (0xFFFFF - 0xE0000)); rsdp_str += 16) {
#ifdef ACPI_DEBUG
dbg() << "ACPI: Looking for RSDP in BIOS ROM area @ V " << (void*)rsdp_str << ", P " << (void*)p_rsdp_str;
#endif
if (!strncmp("RSD PTR ", rsdp_str, strlen("RSD PTR ")))
return PhysicalAddress((FlatPtr)p_rsdp_str);
p_rsdp_str += 16;
}
return {};
}
inline bool StaticParsing::validate_table(Structures::SDTHeader& v_header, size_t length)
{
u8 checksum = 0;
auto* sdt = (u8*)&v_header;
for (size_t i = 0; i < length; i++)
checksum += sdt[i];
if (checksum == 0)
return true;
return false;
}
PhysicalAddress StaticParsing::search_rsdp()
{
PhysicalAddress rsdp;
auto region = MM.allocate_kernel_region(PhysicalAddress(0), PAGE_SIZE, "ACPI RSDP Searching", Region::Access::Read);
u16 ebda_seg = (u16) * ((uint16_t*)((region->vaddr().get() & PAGE_MASK) + 0x40e));
klog() << "ACPI: Probing EBDA, Segment 0x" << String::format("%x", ebda_seg);
rsdp = search_rsdp_in_ebda(ebda_seg);
if (!rsdp.is_null())
return rsdp;
return search_rsdp_in_bios_area();
}
PhysicalAddress StaticParsing::search_table(PhysicalAddress rsdp, const char* signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
// FIXME: Don't blindly use PAGE_SIZE here, but probe the actual length.
ASSERT(strlen(signature) == 4);
auto rsdp_region = MM.allocate_kernel_region(rsdp.page_base(), (PAGE_SIZE * 2), "ACPI Static Parsing search_table()", Region::Access::Read, false, true);
volatile auto* rsdp_ptr = (Structures::RSDPDescriptor20*)rsdp_region->vaddr().offset(rsdp.offset_in_page()).as_ptr();
if (rsdp_ptr->base.revision == 0) {
return search_table_in_rsdt(PhysicalAddress(rsdp_ptr->base.rsdt_ptr), signature);
}
if (rsdp_ptr->base.revision >= 2) {
if (rsdp_ptr->xsdt_ptr != (u64) nullptr)
return search_table_in_xsdt(PhysicalAddress(rsdp_ptr->xsdt_ptr), signature);
return search_table_in_rsdt(PhysicalAddress(rsdp_ptr->base.rsdt_ptr), signature);
}
ASSERT_NOT_REACHED();
}
PhysicalAddress StaticParsing::search_table_in_xsdt(PhysicalAddress xsdt, const char* signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
// FIXME: Don't blindly use PAGE_SIZE here, but probe the actual length.
ASSERT(strlen(signature) == 4);
auto main_sdt_region = MM.allocate_kernel_region(xsdt.page_base(), PAGE_SIZE, "ACPI Static Parsing search_table_in_xsdt()", Region::Access::Read, false, true);
auto* xsdt_ptr = (volatile Structures::XSDT*)main_sdt_region->vaddr().offset(xsdt.offset_in_page()).as_ptr();
for (u32 i = 0; i < ((xsdt_ptr->h.length - sizeof(Structures::SDTHeader)) / sizeof(u64)); i++) {
if (match_table_signature(PhysicalAddress((FlatPtr)xsdt_ptr->table_ptrs[i]), signature))
return PhysicalAddress((FlatPtr)xsdt_ptr->table_ptrs[i]);
}
return {};
}
bool StaticParsing::match_table_signature(PhysicalAddress table_header, const char* signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
// FIXME: Don't blindly use PAGE_SIZE here, but probe the actual length.
ASSERT(strlen(signature) == 4);
auto main_sdt_region = MM.allocate_kernel_region(table_header.page_base(), PAGE_SIZE, "ACPI Static Parsing match_table_signature()", Region::Access::Read, false, true);
auto* table_ptr = (volatile Structures::RSDT*)main_sdt_region->vaddr().offset(table_header.offset_in_page()).as_ptr();
return !strncmp(const_cast<const char*>(table_ptr->h.sig), signature, 4);
}
PhysicalAddress StaticParsing::search_table_in_rsdt(PhysicalAddress rsdt, const char* signature)
{
// FIXME: There's no validation of ACPI tables here. Use the checksum to validate the tables.
// FIXME: Don't blindly use PAGE_SIZE here, but probe the actual length.
ASSERT(strlen(signature) == 4);
auto main_sdt_region = MM.allocate_kernel_region(rsdt.page_base(), PAGE_SIZE, "ACPI Static Parsing search_table_in_rsdt()", Region::Access::Read, false, true);
auto* rsdt_ptr = (volatile Structures::RSDT*)main_sdt_region->vaddr().offset(rsdt.offset_in_page()).as_ptr();
for (u32 i = 0; i < ((rsdt_ptr->h.length - sizeof(Structures::SDTHeader)) / sizeof(u32)); i++) {
if (match_table_signature(PhysicalAddress((FlatPtr)rsdt_ptr->table_ptrs[i]), signature))
return PhysicalAddress((FlatPtr)rsdt_ptr->table_ptrs[i]);
}
return {};
}
}
}

View file

@ -32,48 +32,48 @@
namespace Kernel {
namespace ACPI {
class StaticParser : Parser {
public:
static void initialize(PhysicalAddress rsdp);
static void initialize_without_rsdp();
static bool is_initialized();
class StaticParser : Parser {
public:
static void initialize(PhysicalAddress rsdp);
static void initialize_without_rsdp();
static bool is_initialized();
virtual PhysicalAddress find_table(const char* sig) override;
virtual void try_acpi_reboot() override;
virtual bool can_reboot() override;
virtual bool can_shutdown() override { return false; }
virtual void try_acpi_shutdown() override;
virtual bool is_operable() override { return m_operable; }
virtual PhysicalAddress find_table(const char* sig) override;
virtual void try_acpi_reboot() override;
virtual bool can_reboot() override;
virtual bool can_shutdown() override { return false; }
virtual void try_acpi_shutdown() override;
virtual bool is_operable() override { return m_operable; }
virtual const FADTFlags::HardwareFeatures& hardware_features() const override;
virtual const FADTFlags::x86_Specific_Flags& x86_specific_flags() const override;
virtual const FADTFlags::HardwareFeatures& hardware_features() const override;
virtual const FADTFlags::x86_Specific_Flags& x86_specific_flags() const override;
protected:
StaticParser();
explicit StaticParser(PhysicalAddress);
protected:
StaticParser();
explicit StaticParser(PhysicalAddress);
private:
void locate_static_data();
void locate_main_system_description_table();
void initialize_main_system_description_table();
size_t get_table_size(PhysicalAddress);
u8 get_table_revision(PhysicalAddress);
void init_fadt();
void init_facs();
private:
void locate_static_data();
void locate_main_system_description_table();
void initialize_main_system_description_table();
size_t get_table_size(PhysicalAddress);
u8 get_table_revision(PhysicalAddress);
void init_fadt();
void init_facs();
bool validate_reset_register();
void access_generic_address(const Structures::GenericAddressStructure&, u32 value);
bool validate_reset_register();
void access_generic_address(const Structures::GenericAddressStructure&, u32 value);
PhysicalAddress m_rsdp;
PhysicalAddress m_main_system_description_table;
PhysicalAddress m_rsdp;
PhysicalAddress m_main_system_description_table;
Vector<PhysicalAddress> m_sdt_pointers;
PhysicalAddress m_fadt;
PhysicalAddress m_facs;
Vector<PhysicalAddress> m_sdt_pointers;
PhysicalAddress m_fadt;
PhysicalAddress m_facs;
bool m_xsdt_supported;
FADTFlags::HardwareFeatures m_hardware_flags;
FADTFlags::x86_Specific_Flags m_x86_specific_flags;
};
bool m_xsdt_supported;
FADTFlags::HardwareFeatures m_hardware_flags;
FADTFlags::x86_Specific_Flags m_x86_specific_flags;
};
}
}

File diff suppressed because it is too large Load diff

View file

@ -35,315 +35,315 @@ namespace Kernel {
namespace ACPI {
namespace FADTFlags {
enum class FeatureFlags : u32 {
WBINVD = 1 << 0,
WBINVD_FLUSH = 1 << 1,
PROC_C1 = 1 << 2,
P_LVL2_UP = 1 << 3,
PWR_BUTTON = 1 << 4,
SLP_BUTTON = 1 << 5,
FIX_RTC = 1 << 6,
RTC_s4 = 1 << 7,
TMR_VAL_EXT = 1 << 8,
DCK_CAP = 1 << 9,
RESET_REG_SUPPORTED = 1 << 10,
SEALED_CASE = 1 << 11,
HEADLESS = 1 << 12,
CPU_SW_SLP = 1 << 13,
PCI_EXP_WAK = 1 << 14,
USE_PLATFORM_CLOCK = 1 << 15,
S4_RTC_STS_VALID = 1 << 16,
REMOTE_POWER_ON_CAPABLE = 1 << 17,
FORCE_APIC_CLUSTER_MODEL = 1 << 18,
FORCE_APIC_PHYSICAL_DESTINATION_MODE = 1 << 19,
HW_REDUCED_ACPI = 1 << 20,
LOW_POWER_S0_IDLE_CAPABLE = 1 << 21
};
namespace FADTFlags {
enum class FeatureFlags : u32 {
WBINVD = 1 << 0,
WBINVD_FLUSH = 1 << 1,
PROC_C1 = 1 << 2,
P_LVL2_UP = 1 << 3,
PWR_BUTTON = 1 << 4,
SLP_BUTTON = 1 << 5,
FIX_RTC = 1 << 6,
RTC_s4 = 1 << 7,
TMR_VAL_EXT = 1 << 8,
DCK_CAP = 1 << 9,
RESET_REG_SUPPORTED = 1 << 10,
SEALED_CASE = 1 << 11,
HEADLESS = 1 << 12,
CPU_SW_SLP = 1 << 13,
PCI_EXP_WAK = 1 << 14,
USE_PLATFORM_CLOCK = 1 << 15,
S4_RTC_STS_VALID = 1 << 16,
REMOTE_POWER_ON_CAPABLE = 1 << 17,
FORCE_APIC_CLUSTER_MODEL = 1 << 18,
FORCE_APIC_PHYSICAL_DESTINATION_MODE = 1 << 19,
HW_REDUCED_ACPI = 1 << 20,
LOW_POWER_S0_IDLE_CAPABLE = 1 << 21
};
enum class IA_PC_Flags : u8 {
Legacy_Devices = 1 << 0,
PS2_8042 = 1 << 1,
VGA_Not_Present = 1 << 2,
MSI_Not_Supported = 1 << 3,
PCIe_ASPM_Controls = 1 << 4,
CMOS_RTC_Not_Present = 1 << 5
};
enum class IA_PC_Flags : u8 {
Legacy_Devices = 1 << 0,
PS2_8042 = 1 << 1,
VGA_Not_Present = 1 << 2,
MSI_Not_Supported = 1 << 3,
PCIe_ASPM_Controls = 1 << 4,
CMOS_RTC_Not_Present = 1 << 5
};
struct [[gnu::packed]] HardwareFeatures
{
bool wbinvd : 1;
bool wbinvd_flush : 1;
bool processor_c1 : 1;
bool multiprocessor_c2 : 1;
bool power_button : 1;
bool sleep_button : 1;
bool fix_rtc : 1;
bool rtc_s4 : 1;
bool timer_value_extension : 1;
bool docking_capability : 1;
bool reset_register_supported : 1;
bool sealed_case : 1;
bool headless : 1;
bool cpu_software_sleep : 1;
bool pci_express_wake : 1;
bool use_platform_clock : 1;
bool s4_rtc_status_valid : 1;
bool remote_power_on_capable : 1;
bool force_apic_cluster_model : 1;
bool force_apic_physical_destination_mode : 1;
bool hardware_reduced_acpi : 1;
bool low_power_s0_idle_capable : 1;
};
struct [[gnu::packed]] x86_Specific_Flags
{
bool legacy_devices : 1;
bool keyboard_8042 : 1;
bool vga_not_present : 1;
bool msi_not_supported : 1;
bool cmos_rtc_not_present : 1;
};
};
struct [[gnu::packed]] HardwareFeatures
{
bool wbinvd : 1;
bool wbinvd_flush : 1;
bool processor_c1 : 1;
bool multiprocessor_c2 : 1;
bool power_button : 1;
bool sleep_button : 1;
bool fix_rtc : 1;
bool rtc_s4 : 1;
bool timer_value_extension : 1;
bool docking_capability : 1;
bool reset_register_supported : 1;
bool sealed_case : 1;
bool headless : 1;
bool cpu_software_sleep : 1;
bool pci_express_wake : 1;
bool use_platform_clock : 1;
bool s4_rtc_status_valid : 1;
bool remote_power_on_capable : 1;
bool force_apic_cluster_model : 1;
bool force_apic_physical_destination_mode : 1;
bool hardware_reduced_acpi : 1;
bool low_power_s0_idle_capable : 1;
};
struct [[gnu::packed]] x86_Specific_Flags
{
bool legacy_devices : 1;
bool keyboard_8042 : 1;
bool vga_not_present : 1;
bool msi_not_supported : 1;
bool cmos_rtc_not_present : 1;
};
};
namespace GenericAddressStructure {
enum class AddressSpace {
SystemMemory = 0,
SystemIO = 1,
PCIConfigurationSpace = 2,
EmbeddedController = 3,
SMBus = 4,
PCC = 0xA,
FunctionalFixedHardware = 0x7F
};
enum class AccessSize {
Undefined = 0,
Byte = 1,
Word = 2,
DWord = 3,
QWord = 4
};
enum class BitWidth {
Undefined = 0,
Byte = 8,
Word = 16,
DWord = 32,
QWord = 64
};
}
namespace GenericAddressStructure {
enum class AddressSpace {
SystemMemory = 0,
SystemIO = 1,
PCIConfigurationSpace = 2,
EmbeddedController = 3,
SMBus = 4,
PCC = 0xA,
FunctionalFixedHardware = 0x7F
};
enum class AccessSize {
Undefined = 0,
Byte = 1,
Word = 2,
DWord = 3,
QWord = 4
};
enum class BitWidth {
Undefined = 0,
Byte = 8,
Word = 16,
DWord = 32,
QWord = 64
};
}
namespace Structures {
struct [[gnu::packed]] RSDPDescriptor
{
char sig[8];
u8 checksum;
char oem_id[6];
u8 revision;
u32 rsdt_ptr;
};
namespace Structures {
struct [[gnu::packed]] RSDPDescriptor
{
char sig[8];
u8 checksum;
char oem_id[6];
u8 revision;
u32 rsdt_ptr;
};
struct [[gnu::packed]] RSDPDescriptor20
{
RSDPDescriptor base;
u32 length;
u64 xsdt_ptr;
u8 ext_checksum;
u8 reserved[3];
};
struct [[gnu::packed]] RSDPDescriptor20
{
RSDPDescriptor base;
u32 length;
u64 xsdt_ptr;
u8 ext_checksum;
u8 reserved[3];
};
struct [[gnu::packed]] SDTHeader
{
char sig[4];
u32 length;
u8 revision;
u8 checksum;
char oem_id[6];
char oem_table_id[8];
u32 oem_revision;
u32 creator_id;
u32 creator_revision;
};
struct [[gnu::packed]] SDTHeader
{
char sig[4];
u32 length;
u8 revision;
u8 checksum;
char oem_id[6];
char oem_table_id[8];
u32 oem_revision;
u32 creator_id;
u32 creator_revision;
};
struct [[gnu::packed]] RSDT
{
SDTHeader h;
u32 table_ptrs[];
};
struct [[gnu::packed]] RSDT
{
SDTHeader h;
u32 table_ptrs[];
};
struct [[gnu::packed]] XSDT
{
SDTHeader h;
u64 table_ptrs[];
};
struct [[gnu::packed]] XSDT
{
SDTHeader h;
u64 table_ptrs[];
};
struct [[gnu::packed]] GenericAddressStructure
{
u8 address_space;
u8 bit_width;
u8 bit_offset;
u8 access_size;
u64 address;
};
struct [[gnu::packed]] GenericAddressStructure
{
u8 address_space;
u8 bit_width;
u8 bit_offset;
u8 access_size;
u64 address;
};
struct [[gnu::packed]] HPET
{
SDTHeader h;
u8 hardware_revision_id;
u8 attributes;
u16 pci_vendor_id;
GenericAddressStructure event_timer_block;
u8 hpet_number;
u16 mininum_clock_tick;
u8 page_protection;
};
struct [[gnu::packed]] HPET
{
SDTHeader h;
u8 hardware_revision_id;
u8 attributes;
u16 pci_vendor_id;
GenericAddressStructure event_timer_block;
u8 hpet_number;
u16 mininum_clock_tick;
u8 page_protection;
};
struct [[gnu::packed]] FADT
{
SDTHeader h;
u32 firmware_ctrl;
u32 dsdt_ptr;
u8 reserved;
u8 preferred_pm_profile;
u16 sci_int;
u32 smi_cmd;
u8 acpi_enable_value;
u8 acpi_disable_value;
u8 s4bios_req;
u8 pstate_cnt;
u32 PM1a_EVT_BLK;
u32 PM1b_EVT_BLK;
u32 PM1a_CNT_BLK;
u32 PM1b_CNT_BLK;
u32 PM2_CNT_BLK;
u32 PM_TMR_BLK;
u32 GPE0_BLK;
u32 GPE1_BLK;
u8 PM1_EVT_LEN;
u8 PM1_CNT_LEN;
u8 PM2_CNT_LEN;
u8 PM_TMR_LEN;
u8 GPE0_BLK_LEN;
u8 GPE1_BLK_LEN;
u8 GPE1_BASE;
u8 cst_cnt;
u16 P_LVL2_LAT;
u16 P_LVL3_LAT;
u16 flush_size;
u16 flush_stride;
u8 duty_offset;
u8 duty_width;
u8 day_alrm;
u8 mon_alrm;
u8 century;
u16 ia_pc_boot_arch_flags;
u8 reserved2;
u32 flags;
GenericAddressStructure reset_reg;
u8 reset_value;
u16 arm_boot_arch;
u8 fadt_minor_version;
u64 x_firmware_ctrl;
u64 x_dsdt;
GenericAddressStructure x_pm1a_evt_blk;
GenericAddressStructure x_pm1b_evt_blk;
GenericAddressStructure x_pm1a_cnt_blk;
GenericAddressStructure x_pm1b_cnt_blk;
GenericAddressStructure x_pm2_cnt_blk;
GenericAddressStructure x_pm_tmr_blk;
GenericAddressStructure x_gpe0_blk;
GenericAddressStructure x_gpe1_blk;
GenericAddressStructure sleep_control;
GenericAddressStructure sleep_status;
u64 hypervisor_vendor_identity;
};
enum class MADTEntryType {
LocalAPIC = 0x0,
IOAPIC = 0x1,
InterruptSourceOverride = 0x2,
NMI_Source = 0x3,
LocalAPIC_NMI = 0x4,
LocalAPIC_Address_Override = 0x5,
IO_SAPIC = 0x6,
Local_SAPIC = 0x7,
Platform_interrupt_Sources = 0x8,
Local_x2APIC = 0x9,
Local_x2APIC_NMI = 0xA,
GIC_CPU = 0xB,
GIC_Distributor = 0xC,
GIC_MSI = 0xD,
GIC_Redistrbutor = 0xE,
GIC_Interrupt_Translation = 0xF
};
struct [[gnu::packed]] FADT
{
SDTHeader h;
u32 firmware_ctrl;
u32 dsdt_ptr;
u8 reserved;
u8 preferred_pm_profile;
u16 sci_int;
u32 smi_cmd;
u8 acpi_enable_value;
u8 acpi_disable_value;
u8 s4bios_req;
u8 pstate_cnt;
u32 PM1a_EVT_BLK;
u32 PM1b_EVT_BLK;
u32 PM1a_CNT_BLK;
u32 PM1b_CNT_BLK;
u32 PM2_CNT_BLK;
u32 PM_TMR_BLK;
u32 GPE0_BLK;
u32 GPE1_BLK;
u8 PM1_EVT_LEN;
u8 PM1_CNT_LEN;
u8 PM2_CNT_LEN;
u8 PM_TMR_LEN;
u8 GPE0_BLK_LEN;
u8 GPE1_BLK_LEN;
u8 GPE1_BASE;
u8 cst_cnt;
u16 P_LVL2_LAT;
u16 P_LVL3_LAT;
u16 flush_size;
u16 flush_stride;
u8 duty_offset;
u8 duty_width;
u8 day_alrm;
u8 mon_alrm;
u8 century;
u16 ia_pc_boot_arch_flags;
u8 reserved2;
u32 flags;
GenericAddressStructure reset_reg;
u8 reset_value;
u16 arm_boot_arch;
u8 fadt_minor_version;
u64 x_firmware_ctrl;
u64 x_dsdt;
GenericAddressStructure x_pm1a_evt_blk;
GenericAddressStructure x_pm1b_evt_blk;
GenericAddressStructure x_pm1a_cnt_blk;
GenericAddressStructure x_pm1b_cnt_blk;
GenericAddressStructure x_pm2_cnt_blk;
GenericAddressStructure x_pm_tmr_blk;
GenericAddressStructure x_gpe0_blk;
GenericAddressStructure x_gpe1_blk;
GenericAddressStructure sleep_control;
GenericAddressStructure sleep_status;
u64 hypervisor_vendor_identity;
};
enum class MADTEntryType {
LocalAPIC = 0x0,
IOAPIC = 0x1,
InterruptSourceOverride = 0x2,
NMI_Source = 0x3,
LocalAPIC_NMI = 0x4,
LocalAPIC_Address_Override = 0x5,
IO_SAPIC = 0x6,
Local_SAPIC = 0x7,
Platform_interrupt_Sources = 0x8,
Local_x2APIC = 0x9,
Local_x2APIC_NMI = 0xA,
GIC_CPU = 0xB,
GIC_Distributor = 0xC,
GIC_MSI = 0xD,
GIC_Redistrbutor = 0xE,
GIC_Interrupt_Translation = 0xF
};
struct [[gnu::packed]] MADTEntryHeader
{
u8 type;
u8 length;
};
struct [[gnu::packed]] MADTEntryHeader
{
u8 type;
u8 length;
};
namespace MADTEntries {
struct [[gnu::packed]] IOAPIC
{
MADTEntryHeader h;
u8 ioapic_id;
u8 reserved;
u32 ioapic_address;
u32 gsi_base;
};
namespace MADTEntries {
struct [[gnu::packed]] IOAPIC
{
MADTEntryHeader h;
u8 ioapic_id;
u8 reserved;
u32 ioapic_address;
u32 gsi_base;
};
struct [[gnu::packed]] InterruptSourceOverride
{
MADTEntryHeader h;
u8 bus;
u8 source;
u32 global_system_interrupt;
u16 flags;
};
}
struct [[gnu::packed]] InterruptSourceOverride
{
MADTEntryHeader h;
u8 bus;
u8 source;
u32 global_system_interrupt;
u16 flags;
};
}
struct [[gnu::packed]] MADT
{
SDTHeader h;
u32 lapic_address;
u32 flags;
MADTEntryHeader entries[];
};
struct [[gnu::packed]] MADT
{
SDTHeader h;
u32 lapic_address;
u32 flags;
MADTEntryHeader entries[];
};
struct [[gnu::packed]] AMLTable
{
SDTHeader h;
char aml_code[];
};
struct [[gnu::packed]] AMLTable
{
SDTHeader h;
char aml_code[];
};
struct [[gnu::packed]] PCI_MMIO_Descriptor
{
u64 base_addr;
u16 seg_group_number;
u8 start_pci_bus;
u8 end_pci_bus;
u32 reserved;
};
struct [[gnu::packed]] PCI_MMIO_Descriptor
{
u64 base_addr;
u16 seg_group_number;
u8 start_pci_bus;
u8 end_pci_bus;
u32 reserved;
};
struct [[gnu::packed]] MCFG
{
SDTHeader header;
u64 reserved;
PCI_MMIO_Descriptor descriptors[];
};
}
struct [[gnu::packed]] MCFG
{
SDTHeader header;
u64 reserved;
PCI_MMIO_Descriptor descriptors[];
};
}
class StaticParser;
class DynamicParser;
class Parser;
class StaticParser;
class DynamicParser;
class Parser;
namespace StaticParsing {
PhysicalAddress search_rsdp_in_ebda(u16 ebda_segment);
PhysicalAddress search_rsdp_in_bios_area();
PhysicalAddress search_rsdp();
bool match_table_signature(PhysicalAddress table_header, const char*);
PhysicalAddress search_table(PhysicalAddress rsdp, const char*);
PhysicalAddress search_table_in_xsdt(PhysicalAddress xsdt, const char*);
PhysicalAddress search_table_in_rsdt(PhysicalAddress rsdt, const char*);
inline bool validate_table(Structures::SDTHeader&, size_t length);
};
namespace StaticParsing {
PhysicalAddress search_rsdp_in_ebda(u16 ebda_segment);
PhysicalAddress search_rsdp_in_bios_area();
PhysicalAddress search_rsdp();
bool match_table_signature(PhysicalAddress table_header, const char*);
PhysicalAddress search_table(PhysicalAddress rsdp, const char*);
PhysicalAddress search_table_in_xsdt(PhysicalAddress xsdt, const char*);
PhysicalAddress search_table_in_rsdt(PhysicalAddress rsdt, const char*);
inline bool validate_table(Structures::SDTHeader&, size_t length);
};
}
}

View file

@ -34,156 +34,156 @@
namespace Kernel {
namespace MultiProcessor {
struct [[gnu::packed]] FloatingPointer
{
char sig[4];
u32 physical_address_ptr;
u8 length;
u8 specification_revision;
u8 checksum;
u8 feature_info[5];
};
struct [[gnu::packed]] FloatingPointer
{
char sig[4];
u32 physical_address_ptr;
u8 length;
u8 specification_revision;
u8 checksum;
u8 feature_info[5];
};
struct [[gnu::packed]] EntryHeader
{
u8 entry_type;
};
struct [[gnu::packed]] EntryHeader
{
u8 entry_type;
};
struct [[gnu::packed]] ConfigurationTableHeader
{
char sig[4];
u16 length;
u8 specification_revision;
u8 checksum;
char oem_id[8];
char product_id[12];
u32 oem_table_ptr;
u16 oem_table_size;
u16 entry_count;
u32 local_apic_address;
u16 ext_table_length;
u8 ext_table_checksum;
u8 reserved;
EntryHeader entries[];
};
struct [[gnu::packed]] ConfigurationTableHeader
{
char sig[4];
u16 length;
u8 specification_revision;
u8 checksum;
char oem_id[8];
char product_id[12];
u32 oem_table_ptr;
u16 oem_table_size;
u16 entry_count;
u32 local_apic_address;
u16 ext_table_length;
u8 ext_table_checksum;
u8 reserved;
EntryHeader entries[];
};
enum class ConfigurationTableEntryType {
Processor = 0,
Bus = 1,
IOAPIC = 2,
IO_Interrupt_Assignment = 3,
Local_Interrupt_Assignment = 4,
SystemAddressSpaceMapping = 128,
BusHierarchyDescriptor = 129,
CompatibilityBusAddressSpaceModifier = 130
};
enum class ConfigurationTableEntryType {
Processor = 0,
Bus = 1,
IOAPIC = 2,
IO_Interrupt_Assignment = 3,
Local_Interrupt_Assignment = 4,
SystemAddressSpaceMapping = 128,
BusHierarchyDescriptor = 129,
CompatibilityBusAddressSpaceModifier = 130
};
enum class ConfigurationTableEntryLength {
Processor = 20,
Bus = 8,
IOAPIC = 8,
IO_Interrupt_Assignment = 8,
Local_Interrupt_Assignment = 8,
SystemAddressSpaceMapping = 20,
BusHierarchyDescriptor = 8,
CompatibilityBusAddressSpaceModifier = 8
};
enum class ConfigurationTableEntryLength {
Processor = 20,
Bus = 8,
IOAPIC = 8,
IO_Interrupt_Assignment = 8,
Local_Interrupt_Assignment = 8,
SystemAddressSpaceMapping = 20,
BusHierarchyDescriptor = 8,
CompatibilityBusAddressSpaceModifier = 8
};
struct [[gnu::packed]] ExtEntryHeader
{
u8 entry_type;
u8 entry_length;
};
struct [[gnu::packed]] ExtEntryHeader
{
u8 entry_type;
u8 entry_length;
};
struct [[gnu::packed]] ProcessorEntry
{
EntryHeader h;
u8 local_apic_id;
u8 local_apic_version;
u8 cpu_flags;
u32 cpu_signature;
u32 feature_flags;
u8 reserved[8];
};
struct [[gnu::packed]] ProcessorEntry
{
EntryHeader h;
u8 local_apic_id;
u8 local_apic_version;
u8 cpu_flags;
u32 cpu_signature;
u32 feature_flags;
u8 reserved[8];
};
struct [[gnu::packed]] BusEntry
{
EntryHeader h;
u8 bus_id;
char bus_type[6];
};
struct [[gnu::packed]] BusEntry
{
EntryHeader h;
u8 bus_id;
char bus_type[6];
};
struct [[gnu::packed]] IOAPICEntry
{
EntryHeader h;
u8 ioapic_id;
u8 ioapic_version;
u8 ioapic_flags;
u32 ioapic_address;
};
struct [[gnu::packed]] IOAPICEntry
{
EntryHeader h;
u8 ioapic_id;
u8 ioapic_version;
u8 ioapic_flags;
u32 ioapic_address;
};
enum class InterruptType {
INT = 0,
NMI = 1,
SMI = 2,
ExtINT = 3,
};
enum class InterruptType {
INT = 0,
NMI = 1,
SMI = 2,
ExtINT = 3,
};
struct [[gnu::packed]] IOInterruptAssignmentEntry
{
EntryHeader h;
u8 interrupt_type;
u8 polarity;
u8 trigger_mode;
u8 source_bus_id;
u8 source_bus_irq;
u8 destination_ioapic_id;
u8 destination_ioapic_intin_pin;
};
struct [[gnu::packed]] IOInterruptAssignmentEntry
{
EntryHeader h;
u8 interrupt_type;
u8 polarity;
u8 trigger_mode;
u8 source_bus_id;
u8 source_bus_irq;
u8 destination_ioapic_id;
u8 destination_ioapic_intin_pin;
};
struct [[gnu::packed]] LocalInterruptAssignmentEntry
{
EntryHeader h;
u8 interrupt_type;
u8 polarity;
u8 trigger_mode;
u8 source_bus_id;
u8 source_bus_irq;
u8 destination_lapic_id;
u8 destination_lapic_lintin_pin;
};
struct [[gnu::packed]] LocalInterruptAssignmentEntry
{
EntryHeader h;
u8 interrupt_type;
u8 polarity;
u8 trigger_mode;
u8 source_bus_id;
u8 source_bus_irq;
u8 destination_lapic_id;
u8 destination_lapic_lintin_pin;
};
enum class SystemAddressType {
IO = 0,
Memory = 1,
Prefetch = 2,
};
enum class SystemAddressType {
IO = 0,
Memory = 1,
Prefetch = 2,
};
struct [[gnu::packed]] SystemAddressSpaceMappingEntry
{
ExtEntryHeader h;
u8 bus_id;
u8 address_type;
u64 address_base;
u64 length;
};
struct [[gnu::packed]] SystemAddressSpaceMappingEntry
{
ExtEntryHeader h;
u8 bus_id;
u8 address_type;
u64 address_base;
u64 length;
};
struct [[gnu::packed]] BusHierarchyDescriptorEntry
{
ExtEntryHeader h;
u8 bus_id;
u8 bus_info;
u8 parent_bus;
u8 reserved[3];
};
struct [[gnu::packed]] BusHierarchyDescriptorEntry
{
ExtEntryHeader h;
u8 bus_id;
u8 bus_info;
u8 parent_bus;
u8 reserved[3];
};
struct [[gnu::packed]] CompatibilityBusAddressSpaceModifierEntry
{
ExtEntryHeader h;
u8 bus_id;
u8 address_modifier;
u32 predefined_range_list;
};
struct [[gnu::packed]] CompatibilityBusAddressSpaceModifierEntry
{
ExtEntryHeader h;
u8 bus_id;
u8 address_modifier;
u32 predefined_range_list;
};
}