1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-25 13:17:35 +00:00

Piano: Try to be more stereo-oriented

This commit is contained in:
William McPherson 2020-02-09 23:19:48 +11:00 committed by Andreas Kling
parent 255edcb525
commit 93903c8064
2 changed files with 26 additions and 24 deletions

View file

@ -78,32 +78,32 @@ void AudioEngine::fill_buffer(FixedArray<Sample>& buffer)
ASSERT_NOT_REACHED();
}
double val = 0;
Audio::Sample sample;
switch (m_wave) {
case Wave::Sine:
val = (volume * m_power[note]) * sine(note);
sample = sine(note);
break;
case Wave::Saw:
val = (volume * m_power[note]) * saw(note);
sample = saw(note);
break;
case Wave::Square:
val = (volume * m_power[note]) * square(note);
sample = square(note);
break;
case Wave::Triangle:
val = (volume * m_power[note]) * triangle(note);
sample = triangle(note);
break;
case Wave::Noise:
val = (volume * m_power[note]) * noise();
sample = noise();
break;
case Wave::RecordedSample:
val = (volume * m_power[note]) * recorded_sample(note);
sample = recorded_sample(note);
break;
default:
ASSERT_NOT_REACHED();
}
buffer[i].left += val;
buffer[i].left += sample.left * m_power[note] * volume;
buffer[i].right += sample.right * m_power[note] * volume;
}
buffer[i].right = buffer[i].left;
}
if (m_delay) {
@ -180,7 +180,7 @@ String AudioEngine::set_recorded_sample(const StringView& path)
// All of the information for these waves is on Wikipedia.
double AudioEngine::sine(size_t note)
Audio::Sample AudioEngine::sine(size_t note)
{
double pos = note_frequencies[note] / sample_rate;
double sin_step = pos * 2 * M_PI;
@ -189,7 +189,7 @@ double AudioEngine::sine(size_t note)
return w;
}
double AudioEngine::saw(size_t note)
Audio::Sample AudioEngine::saw(size_t note)
{
double saw_step = note_frequencies[note] / sample_rate;
double t = m_pos[note];
@ -198,7 +198,7 @@ double AudioEngine::saw(size_t note)
return w;
}
double AudioEngine::square(size_t note)
Audio::Sample AudioEngine::square(size_t note)
{
double pos = note_frequencies[note] / sample_rate;
double square_step = pos * 2 * M_PI;
@ -207,7 +207,7 @@ double AudioEngine::square(size_t note)
return w;
}
double AudioEngine::triangle(size_t note)
Audio::Sample AudioEngine::triangle(size_t note)
{
double triangle_step = note_frequencies[note] / sample_rate;
double t = m_pos[note];
@ -216,26 +216,28 @@ double AudioEngine::triangle(size_t note)
return w;
}
double AudioEngine::noise() const
Audio::Sample AudioEngine::noise() const
{
double random_percentage = static_cast<double>(rand()) / RAND_MAX;
double w = (random_percentage * 2) - 1;
return w;
}
double AudioEngine::recorded_sample(size_t note)
Audio::Sample AudioEngine::recorded_sample(size_t note)
{
int t = m_pos[note];
if (t >= m_recorded_sample.size())
return 0;
double w = m_recorded_sample[t].left;
float w_left = m_recorded_sample[t].left;
float w_right = m_recorded_sample[t].right;
if (t + 1 < m_recorded_sample.size()) {
double t_fraction = m_pos[note] - t;
w += (m_recorded_sample[t + 1].left - m_recorded_sample[t].left) * t_fraction;
w_left += (m_recorded_sample[t + 1].left - m_recorded_sample[t].left) * t_fraction;
w_right += (m_recorded_sample[t + 1].right - m_recorded_sample[t].right) * t_fraction;
}
double recorded_sample_step = note_frequencies[note] / middle_c;
m_pos[note] += recorded_sample_step;
return w;
return { w_left, w_right };
}
static inline double calculate_step(double distance, int milliseconds)