1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-22 19:45:08 +00:00

LibM: Implement various trig functions

Patch from Anonymous.
This commit is contained in:
Andreas Kling 2019-09-29 21:04:08 +02:00
parent 3ebfa9f044
commit 941981ec4f
3 changed files with 129 additions and 9 deletions

View file

@ -1,10 +1,21 @@
#include <LibC/assert.h>
#include <LibM/math.h>
#include <limits>
#include <stdint.h>
#include <stdlib.h>
template<size_t> constexpr double e_to_power();
template<> constexpr double e_to_power<0>() { return 1; }
template<size_t exponent> constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
template<size_t> constexpr size_t factorial();
template<> constexpr size_t factorial<0>() { return 1; }
template<size_t value> constexpr size_t factorial() { return value * factorial<value - 1>(); }
extern "C" {
double trunc(double x)
{
return (int)x;
return (int64_t)x;
}
double cos(double angle)
@ -40,17 +51,25 @@ double pow(double x, double y)
(void)x;
(void)y;
ASSERT_NOT_REACHED();
return 0;
}
double ldexp(double, int exp)
{
(void)exp;
ASSERT_NOT_REACHED();
return 0;
}
double tanh(double)
double tanh(double x)
{
ASSERT_NOT_REACHED();
if (x > 0) {
double exponentiated = exp(2 * x);
return (exponentiated - 1) / (exponentiated + 1);
}
double plusX = exp(x);
double minusX = exp(-x);
return (plusX - minusX) / (plusX + minusX);
}
double tan(double angle)
@ -65,19 +84,25 @@ double sqrt(double x)
return res;
}
double sinh(double)
double sinh(double x)
{
ASSERT_NOT_REACHED();
if (x > 0) {
double exponentiated = exp(x);
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
}
return (exp(x) - exp(-x)) / 2;
}
double log10(double)
{
ASSERT_NOT_REACHED();
return 0;
}
double log(double)
{
ASSERT_NOT_REACHED();
return 0;
}
double fmod(double index, double period)
@ -85,67 +110,107 @@ double fmod(double index, double period)
return index - trunc(index / period) * period;
}
double exp(double)
double exp(double exponent)
{
ASSERT_NOT_REACHED();
double result = 1;
if (exponent >= 1) {
size_t integer_part = (size_t)exponent;
if (integer_part & 1) result *= e_to_power<1>();
if (integer_part & 2) result *= e_to_power<2>();
if (integer_part > 3) {
if (integer_part & 4) result *= e_to_power<4>();
if (integer_part & 8) result *= e_to_power<8>();
if (integer_part & 16) result *= e_to_power<16>();
if (integer_part & 32) result *= e_to_power<32>();
if (integer_part >= 64) return std::numeric_limits<double>::infinity();
}
exponent -= integer_part;
} else if (exponent < 0)
return 1 / exp(-exponent);
double taylor_series_result = 1 + exponent;
double taylor_series_numerator = exponent * exponent;
taylor_series_result += taylor_series_numerator / factorial<2>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<3>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<4>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<5>();
return result * taylor_series_result;
}
double cosh(double)
double cosh(double x)
{
ASSERT_NOT_REACHED();
if (x < 0) {
double exponentiated = exp(-x);
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
}
return (exp(x) + exp(-x)) / 2;
}
double atan2(double, double)
{
ASSERT_NOT_REACHED();
return 0;
}
double atan(double)
{
ASSERT_NOT_REACHED();
return 0;
}
double asin(double)
{
ASSERT_NOT_REACHED();
return 0;
}
double acos(double)
{
ASSERT_NOT_REACHED();
return 0;
}
double fabs(double value)
{
return value < 0 ? -value : value;
}
double log2(double)
{
ASSERT_NOT_REACHED();
return 0;
}
float log2f(float)
{
ASSERT_NOT_REACHED();
return 0;
}
long double log2l(long double)
{
ASSERT_NOT_REACHED();
return 0;
}
double frexp(double, int*)
{
ASSERT_NOT_REACHED();
return 0;
}
float frexpf(float, int*)
{
ASSERT_NOT_REACHED();
return 0;
}
long double frexpl(long double, int*)
{
ASSERT_NOT_REACHED();
return 0;
}
}