1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-25 04:27:43 +00:00

Kernel: A bunch of hacking towards initial Ethernet support.

This commit is contained in:
Andreas Kling 2019-03-10 20:59:23 +01:00
parent 4641ee49b5
commit 97664fad60
8 changed files with 239 additions and 5 deletions

View file

@ -24,6 +24,61 @@
#define REG_RADV 0x282C // RX Int. Absolute Delay Timer
#define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt
#define REG_TIPG 0x0410 // Transmit Inter Packet Gap
#define ECTRL_SLU 0x40 //set link up
#define RCTL_EN (1 << 1) // Receiver Enable
#define RCTL_SBP (1 << 2) // Store Bad Packets
#define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled
#define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled
#define RCTL_LPE (1 << 5) // Long Packet Reception Enable
#define RCTL_LBM_NONE (0 << 6) // No Loopback
#define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback
#define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN
#define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN
#define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN
#define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36
#define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35
#define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34
#define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32
#define RCTL_BAM (1 << 15) // Broadcast Accept Mode
#define RCTL_VFE (1 << 18) // VLAN Filter Enable
#define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable
#define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value
#define RCTL_DPF (1 << 22) // Discard Pause Frames
#define RCTL_PMCF (1 << 23) // Pass MAC Control Frames
#define RCTL_SECRC (1 << 26) // Strip Ethernet CRC
// Buffer Sizes
#define RCTL_BSIZE_256 (3 << 16)
#define RCTL_BSIZE_512 (2 << 16)
#define RCTL_BSIZE_1024 (1 << 16)
#define RCTL_BSIZE_2048 (0 << 16)
#define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25))
#define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25))
#define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25))
// Transmit Command
#define CMD_EOP (1 << 0) // End of Packet
#define CMD_IFCS (1 << 1) // Insert FCS
#define CMD_IC (1 << 2) // Insert Checksum
#define CMD_RS (1 << 3) // Report Status
#define CMD_RPS (1 << 4) // Report Packet Sent
#define CMD_VLE (1 << 6) // VLAN Packet Enable
#define CMD_IDE (1 << 7) // Interrupt Delay Enable
// TCTL Register
#define TCTL_EN (1 << 1) // Transmit Enable
#define TCTL_PSP (1 << 3) // Pad Short Packets
#define TCTL_CT_SHIFT 4 // Collision Threshold
#define TCTL_COLD_SHIFT 12 // Collision Distance
#define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission
#define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision
#define TSTA_DD (1 << 0) // Descriptor Done
#define TSTA_EC (1 << 1) // Excess Collisions
#define TSTA_LC (1 << 2) // Late Collision
#define LSTA_TU (1 << 3) // Transmit Underrun
OwnPtr<E1000NetworkAdapter> E1000NetworkAdapter::autodetect()
{
@ -41,13 +96,24 @@ OwnPtr<E1000NetworkAdapter> E1000NetworkAdapter::autodetect()
return make<E1000NetworkAdapter>(found_address, irq);
}
static E1000NetworkAdapter* s_the;
E1000NetworkAdapter* E1000NetworkAdapter::the()
{
return s_the;
}
E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address pci_address, byte irq)
: IRQHandler(irq)
, m_pci_address(pci_address)
{
s_the = this;
kprintf("E1000: Found at PCI address %b:%b:%b\n", pci_address.bus(), pci_address.slot(), pci_address.function());
m_mmio_base = PhysicalAddress(PCI::get_BAR0(m_pci_address));
MM.map_for_kernel(LinearAddress(m_mmio_base.get()), m_mmio_base);
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(4096).get()), m_mmio_base.offset(4096));
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(8192).get()), m_mmio_base.offset(8192));
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(12288).get()), m_mmio_base.offset(12288));
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(16384).get()), m_mmio_base.offset(16384));
m_use_mmio = true;
m_io_base = PCI::get_BAR1(m_pci_address) & ~1;
m_interrupt_line = PCI::get_interrupt_line(m_pci_address);
@ -59,6 +125,17 @@ E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address pci_address, byte irq)
read_mac_address();
const auto& mac = mac_address();
kprintf("E1000: MAC address: %b:%b:%b:%b:%b:%b\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
dword flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
initialize_rx_descriptors();
initialize_tx_descriptors();
out32(REG_IMASK, 0x1f6dc);
out32(REG_IMASK, 0xff & ~4);
in32(0xc0);
enable_irq();
}
@ -69,6 +146,20 @@ E1000NetworkAdapter::~E1000NetworkAdapter()
void E1000NetworkAdapter::handle_irq()
{
kprintf("E1000: IRQ!\n");
out32(REG_IMASK, 0x1);
dword status = in32(0xc0);
if (status & 4) {
dword flags = in32(REG_CTRL);
out32(REG_CTRL, flags | ECTRL_SLU);
}
if (status & 0x10) {
kprintf("E1000: threshold\n");
}
if (status & 0x80) {
//receive();
}
ASSERT_NOT_REACHED();
}
void E1000NetworkAdapter::detect_eeprom()
@ -120,6 +211,53 @@ void E1000NetworkAdapter::read_mac_address()
}
}
void E1000NetworkAdapter::initialize_rx_descriptors()
{
auto ptr = (dword)kmalloc_eternal(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16);
// Make sure it's 16-byte aligned.
if (ptr % 16)
ptr = (ptr + 16) - (ptr % 16);
m_rx_descriptors = (e1000_rx_desc*)ptr;
for (int i = 0; i < number_of_rx_descriptors; ++i) {
auto& descriptor = m_rx_descriptors[i];
descriptor.addr = (qword)kmalloc_eternal(8192 + 16);
descriptor.status = 0;
}
out32(REG_RXDESCLO, ptr);
out32(REG_RXDESCHI, 0);
out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc));
out32(REG_RXDESCHEAD, 0);
out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1);
m_rx_current = 0;
out32(REG_RCTRL, RCTL_EN| RCTL_SBP| RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192);
}
void E1000NetworkAdapter::initialize_tx_descriptors()
{
auto ptr = (dword)kmalloc_eternal(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16);
// Make sure it's 16-byte aligned.
if (ptr % 16)
ptr = (ptr + 16) - (ptr % 16);
m_tx_descriptors = (e1000_tx_desc*)ptr;
for (int i = 0; i < number_of_tx_descriptors; ++i) {
auto& descriptor = m_tx_descriptors[i];
descriptor.addr = 0;
descriptor.cmd = 0;
}
out32(REG_TXDESCLO, ptr);
out32(REG_TXDESCHI, 0);
out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc));
out32(REG_TXDESCHEAD, 0);
out32(REG_TXDESCTAIL, number_of_tx_descriptors - 1);
m_tx_current = 0;
out32(REG_TCTRL, 0b0110000000000111111000011111010);
out32(REG_TIPG, 0x0060200A);
}
void E1000NetworkAdapter::out8(word address, byte data)
{
if (m_use_mmio) {
@ -144,6 +282,7 @@ void E1000NetworkAdapter::out32(word address, dword data)
{
if (m_use_mmio) {
auto* ptr = (volatile dword*)(m_mmio_base.get() + address);
kprintf("ptr <-- %p\n", ptr);
*ptr = data;
return;
}
@ -170,3 +309,17 @@ dword E1000NetworkAdapter::in32(word address)
return *(volatile dword*)(m_mmio_base.get() + address);
return IO::in32(m_io_base + address);
}
void E1000NetworkAdapter::send(const byte* data, int length)
{
kprintf("E1000: Sending packet (%d bytes)\n", length);
auto& descriptor = m_tx_descriptors[m_tx_current];
descriptor.addr = (uint64_t)data;
descriptor.length = length;
descriptor.cmd = (1 << 3) | 3;
m_tx_current = m_tx_current + 1 % number_of_tx_descriptors;
out32(REG_TXDESCTAIL, m_tx_current);
while (!(descriptor.status & 0xff))
;
kprintf("E1000: Sent packet!\n");
}