mirror of
https://github.com/RGBCube/serenity
synced 2025-05-31 07:38:10 +00:00
LibWeb: Add CanvasPath arcTo support
Adds initial CanvasPath arcTo support for 2D rendering contexts https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-arcto
This commit is contained in:
parent
7cb80c67d8
commit
9a61041941
5 changed files with 94 additions and 7 deletions
|
@ -120,6 +120,78 @@ WebIDL::ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radius_x,
|
|||
return {};
|
||||
}
|
||||
|
||||
// https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-arcto
|
||||
WebIDL::ExceptionOr<void> CanvasPath::arc_to(double x1, double y1, double x2, double y2, double radius)
|
||||
{
|
||||
// 1. If any of the arguments are infinite or NaN, then return.
|
||||
if (!isfinite(x1) || !isfinite(y1) || !isfinite(x2) || !isfinite(y2) || !isfinite(radius))
|
||||
return {};
|
||||
|
||||
// 2. Ensure there is a subpath for (x1, y1).
|
||||
auto transform = active_transform();
|
||||
m_path.ensure_subpath(transform.map(Gfx::FloatPoint { x1, y1 }));
|
||||
|
||||
// 3. If radius is negative, then throw an "IndexSizeError" DOMException.
|
||||
if (radius < 0)
|
||||
return WebIDL::IndexSizeError::create(m_self->realm(), MUST(String::formatted("The radius provided ({}) is negative.", radius)));
|
||||
|
||||
// 4. Let the point (x0, y0) be the last point in the subpath,
|
||||
// transformed by the inverse of the current transformation matrix
|
||||
// (so that it is in the same coordinate system as the points passed to the method).
|
||||
// Point (x0, y0)
|
||||
auto p0 = m_path.last_point();
|
||||
// Point (x1, y1)
|
||||
auto p1 = transform.map(Gfx::FloatPoint { x1, y1 });
|
||||
// Point (x2, y2)
|
||||
auto p2 = transform.map(Gfx::FloatPoint { x2, y2 });
|
||||
|
||||
// 5. If the point (x0, y0) is equal to the point (x1, y1),
|
||||
// or if the point (x1, y1) is equal to the point (x2, y2),
|
||||
// or if radius is zero, then add the point (x1, y1) to the subpath,
|
||||
// and connect that point to the previous point (x0, y0) by a straight line.
|
||||
if (p0 == p1 || p1 == p2 || radius == 0) {
|
||||
m_path.line_to(p1);
|
||||
return {};
|
||||
}
|
||||
|
||||
auto v1 = Gfx::FloatVector2 { p0.x() - p1.x(), p0.y() - p1.y() };
|
||||
auto v2 = Gfx::FloatVector2 { p2.x() - p1.x(), p2.y() - p1.y() };
|
||||
auto cos_theta = v1.dot(v2) / (v1.length() * v2.length());
|
||||
// 6. Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line,
|
||||
// then add the point (x1, y1) to the subpath,
|
||||
// and connect that point to the previous point (x0, y0) by a straight line.
|
||||
if (-1 == cos_theta || 1 == cos_theta) {
|
||||
m_path.line_to(p1);
|
||||
return {};
|
||||
}
|
||||
|
||||
// 7. Otherwise, let The Arc be the shortest arc given by circumference of the circle that has radius radius,
|
||||
// and that has one point tangent to the half-infinite line that crosses the point (x0, y0) and ends at the point (x1, y1),
|
||||
// and that has a different point tangent to the half-infinite line that ends at the point (x1, y1) and crosses the point (x2, y2).
|
||||
// The points at which this circle touches these two lines are called the start and end tangent points respectively.
|
||||
auto adjacent = radius / static_cast<double>(tan(acos(cos_theta) / 2));
|
||||
auto factor1 = adjacent / static_cast<double>(v1.length());
|
||||
auto x3 = static_cast<double>(p1.x()) + factor1 * static_cast<double>(p0.x() - p1.x());
|
||||
auto y3 = static_cast<double>(p1.y()) + factor1 * static_cast<double>(p0.y() - p1.y());
|
||||
auto start_tangent = Gfx::FloatPoint { x3, y3 };
|
||||
|
||||
auto factor2 = adjacent / static_cast<double>(v2.length());
|
||||
auto x4 = static_cast<double>(p1.x()) + factor2 * static_cast<double>(p2.x() - p1.x());
|
||||
auto y4 = static_cast<double>(p1.y()) + factor2 * static_cast<double>(p2.y() - p1.y());
|
||||
auto end_tangent = Gfx::FloatPoint { x4, y4 };
|
||||
|
||||
// Connect the point (x0, y0) to the start tangent point by a straight line, adding the start tangent point to the subpath.
|
||||
m_path.line_to(start_tangent);
|
||||
|
||||
bool const large_arc = false; // always small since tangent points define arc endpoints and lines meet at (x1, y1)
|
||||
auto cross_product = v1.x() * v2.y() - v1.y() * v2.x();
|
||||
bool const sweep = cross_product < 0; // right-hand rule, true means clockwise
|
||||
|
||||
// and then connect the start tangent point to the end tangent point by The Arc, adding the end tangent point to the subpath.
|
||||
m_path.arc_to(end_tangent, radius, large_arc, sweep);
|
||||
return {};
|
||||
}
|
||||
|
||||
void CanvasPath::rect(float x, float y, float width, float height)
|
||||
{
|
||||
auto transform = active_transform();
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue