mirror of
https://github.com/RGBCube/serenity
synced 2025-05-31 15:28:11 +00:00
LibJS: Replace GlobalObject with VM in Value AOs [Part 4/19]
This is where the fun begins. :^)
This commit is contained in:
parent
f6c4a0f5d0
commit
a022e548b8
129 changed files with 1230 additions and 1325 deletions
|
@ -1,6 +1,6 @@
|
|||
/*
|
||||
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
|
||||
* Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
|
||||
* Copyright (c) 2020-2022, Linus Groh <linusg@serenityos.org>
|
||||
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-2-Clause
|
||||
|
@ -78,7 +78,7 @@ void MathObject::initialize(Realm& realm)
|
|||
// 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
if (number.is_negative_zero())
|
||||
|
@ -98,7 +98,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
|
|||
// 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
return Value(::sqrt(number.as_double()));
|
||||
|
@ -107,7 +107,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
|
|||
// 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
return Value(::floor(number.as_double()));
|
||||
|
@ -116,7 +116,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
|
|||
// 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
auto number_double = number.as_double();
|
||||
|
@ -128,7 +128,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
|
|||
// 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
|
||||
{
|
||||
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
|
||||
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
|
||||
double integer = ::ceil(value);
|
||||
if (integer - 0.5 > value)
|
||||
integer--;
|
||||
|
@ -140,7 +140,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
|
|||
{
|
||||
Vector<Value> coerced;
|
||||
for (size_t i = 0; i < vm.argument_count(); ++i)
|
||||
coerced.append(TRY(vm.argument(i).to_number(global_object)));
|
||||
coerced.append(TRY(vm.argument(i).to_number(vm)));
|
||||
|
||||
auto highest = js_negative_infinity();
|
||||
for (auto& number : coerced) {
|
||||
|
@ -157,7 +157,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
|
|||
{
|
||||
Vector<Value> coerced;
|
||||
for (size_t i = 0; i < vm.argument_count(); ++i)
|
||||
coerced.append(TRY(vm.argument(i).to_number(global_object)));
|
||||
coerced.append(TRY(vm.argument(i).to_number(vm)));
|
||||
|
||||
auto lowest = js_infinity();
|
||||
for (auto& number : coerced) {
|
||||
|
@ -172,7 +172,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
|
|||
// 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
if (number.as_double() < 0)
|
||||
|
@ -184,7 +184,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
|
|||
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
|
||||
{
|
||||
// 1. Let n be ? ToNumber(x).
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
|
||||
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
|
||||
return number;
|
||||
|
@ -201,7 +201,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
|
|||
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
|
||||
{
|
||||
// 1. Let n be ? ToNumber(x).
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
|
||||
// 2. If n is NaN, n is +∞𝔽, or n is -∞𝔽, return NaN.
|
||||
if (number.is_nan() || number.is_infinity())
|
||||
|
@ -219,7 +219,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
|
|||
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
|
||||
{
|
||||
// Let n be ? ToNumber(x).
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
|
||||
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
|
||||
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
|
||||
|
@ -236,15 +236,15 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
|
|||
// 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
|
||||
{
|
||||
auto base = TRY(vm.argument(0).to_number(global_object));
|
||||
auto exponent = TRY(vm.argument(1).to_number(global_object));
|
||||
return JS::exp(global_object, base, exponent);
|
||||
auto base = TRY(vm.argument(0).to_number(vm));
|
||||
auto exponent = TRY(vm.argument(1).to_number(vm));
|
||||
return JS::exp(vm, base, exponent);
|
||||
}
|
||||
|
||||
// 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
return Value(::exp(number.as_double()));
|
||||
|
@ -253,7 +253,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
|
|||
// 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
return Value(::expm1(number.as_double()));
|
||||
|
@ -262,7 +262,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
|
|||
// 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_positive_zero())
|
||||
return Value(0);
|
||||
if (number.is_negative_zero())
|
||||
|
@ -277,7 +277,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
|
|||
// 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_u32(global_object));
|
||||
auto number = TRY(vm.argument(0).to_u32(vm));
|
||||
if (number == 0)
|
||||
return Value(32);
|
||||
return Value(count_leading_zeroes(number));
|
||||
|
@ -286,7 +286,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
|
|||
// 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
|
||||
return js_nan();
|
||||
if (number.as_double() == 1)
|
||||
|
@ -297,7 +297,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
|
|||
// 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
|
||||
{
|
||||
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
|
||||
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
|
||||
if (value < 1)
|
||||
return js_nan();
|
||||
return Value(::acosh(value));
|
||||
|
@ -306,7 +306,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
|
|||
// 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
|
||||
return number;
|
||||
return Value(::asin(number.as_double()));
|
||||
|
@ -315,13 +315,13 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
|
|||
// 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
|
||||
{
|
||||
return Value(::asinh(TRY(vm.argument(0).to_number(global_object)).as_double()));
|
||||
return Value(::asinh(TRY(vm.argument(0).to_number(vm)).as_double()));
|
||||
}
|
||||
|
||||
// 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
|
||||
return number;
|
||||
if (number.is_positive_infinity())
|
||||
|
@ -334,7 +334,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
|
|||
// 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
|
||||
{
|
||||
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
|
||||
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
|
||||
if (value > 1 || value < -1)
|
||||
return js_nan();
|
||||
return Value(::atanh(value));
|
||||
|
@ -343,7 +343,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
|
|||
// 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
|
||||
{
|
||||
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
|
||||
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
|
||||
if (value < -1)
|
||||
return js_nan();
|
||||
return Value(::log1p(value));
|
||||
|
@ -352,7 +352,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
|
|||
// 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
|
||||
{
|
||||
return Value(::cbrt(TRY(vm.argument(0).to_number(global_object)).as_double()));
|
||||
return Value(::cbrt(TRY(vm.argument(0).to_number(vm)).as_double()));
|
||||
}
|
||||
|
||||
// 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
|
||||
|
@ -360,8 +360,8 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
|
|||
{
|
||||
auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
|
||||
|
||||
auto y = TRY(vm.argument(0).to_number(global_object));
|
||||
auto x = TRY(vm.argument(1).to_number(global_object));
|
||||
auto y = TRY(vm.argument(0).to_number(vm));
|
||||
auto x = TRY(vm.argument(1).to_number(vm));
|
||||
|
||||
if (y.is_nan() || x.is_nan())
|
||||
return js_nan();
|
||||
|
@ -417,7 +417,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
|
|||
// 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
return Value((float)number.as_double());
|
||||
|
@ -428,7 +428,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
|
|||
{
|
||||
Vector<Value> coerced;
|
||||
for (size_t i = 0; i < vm.argument_count(); ++i)
|
||||
coerced.append(TRY(vm.argument(i).to_number(global_object)));
|
||||
coerced.append(TRY(vm.argument(i).to_number(vm)));
|
||||
|
||||
for (auto& number : coerced) {
|
||||
if (number.is_positive_infinity() || number.is_negative_infinity())
|
||||
|
@ -454,15 +454,15 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
|
|||
// 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
|
||||
{
|
||||
auto a = TRY(vm.argument(0).to_u32(global_object));
|
||||
auto b = TRY(vm.argument(1).to_u32(global_object));
|
||||
auto a = TRY(vm.argument(0).to_u32(vm));
|
||||
auto b = TRY(vm.argument(1).to_u32(vm));
|
||||
return Value(static_cast<i32>(a * b));
|
||||
}
|
||||
|
||||
// 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
|
||||
{
|
||||
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
|
||||
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
|
||||
if (value < 0)
|
||||
return js_nan();
|
||||
return Value(::log(value));
|
||||
|
@ -471,7 +471,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
|
|||
// 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
|
||||
{
|
||||
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
|
||||
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
|
||||
if (value < 0)
|
||||
return js_nan();
|
||||
return Value(::log2(value));
|
||||
|
@ -480,7 +480,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
|
|||
// 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
|
||||
{
|
||||
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
|
||||
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
|
||||
if (value < 0)
|
||||
return js_nan();
|
||||
return Value(::log10(value));
|
||||
|
@ -489,7 +489,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
|
|||
// 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
return Value(::sinh(number.as_double()));
|
||||
|
@ -499,7 +499,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
|
|||
JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
|
||||
{
|
||||
// 1. Let n be ? ToNumber(x).
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
|
||||
// 2. If n is NaN, return NaN.
|
||||
if (number.is_nan())
|
||||
|
@ -520,7 +520,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
|
|||
// 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
|
||||
JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
|
||||
{
|
||||
auto number = TRY(vm.argument(0).to_number(global_object));
|
||||
auto number = TRY(vm.argument(0).to_number(vm));
|
||||
if (number.is_nan())
|
||||
return js_nan();
|
||||
if (number.is_positive_infinity())
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue