1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 15:28:11 +00:00

LibJS: Replace GlobalObject with VM in Value AOs [Part 4/19]

This is where the fun begins. :^)
This commit is contained in:
Linus Groh 2022-08-21 14:00:56 +01:00
parent f6c4a0f5d0
commit a022e548b8
129 changed files with 1230 additions and 1325 deletions

View file

@ -1,6 +1,6 @@
/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2020, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2020-2022, Linus Groh <linusg@serenityos.org>
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
@ -78,7 +78,7 @@ void MathObject::initialize(Realm& realm)
// 21.3.2.1 Math.abs ( x ), https://tc39.es/ecma262/#sec-math.abs
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
if (number.is_negative_zero())
@ -98,7 +98,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::random)
// 21.3.2.32 Math.sqrt ( x ), https://tc39.es/ecma262/#sec-math.sqrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
return Value(::sqrt(number.as_double()));
@ -107,7 +107,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
// 21.3.2.16 Math.floor ( x ), https://tc39.es/ecma262/#sec-math.floor
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
return Value(::floor(number.as_double()));
@ -116,7 +116,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
// 21.3.2.10 Math.ceil ( x ), https://tc39.es/ecma262/#sec-math.ceil
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
auto number_double = number.as_double();
@ -128,7 +128,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
// 21.3.2.28 Math.round ( x ), https://tc39.es/ecma262/#sec-math.round
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
{
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
double integer = ::ceil(value);
if (integer - 0.5 > value)
integer--;
@ -140,7 +140,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
{
Vector<Value> coerced;
for (size_t i = 0; i < vm.argument_count(); ++i)
coerced.append(TRY(vm.argument(i).to_number(global_object)));
coerced.append(TRY(vm.argument(i).to_number(vm)));
auto highest = js_negative_infinity();
for (auto& number : coerced) {
@ -157,7 +157,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
{
Vector<Value> coerced;
for (size_t i = 0; i < vm.argument_count(); ++i)
coerced.append(TRY(vm.argument(i).to_number(global_object)));
coerced.append(TRY(vm.argument(i).to_number(vm)));
auto lowest = js_infinity();
for (auto& number : coerced) {
@ -172,7 +172,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
// 21.3.2.35 Math.trunc ( x ), https://tc39.es/ecma262/#sec-math.trunc
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
if (number.as_double() < 0)
@ -184,7 +184,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
@ -201,7 +201,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +∞𝔽, or n is -∞𝔽, return NaN.
if (number.is_nan() || number.is_infinity())
@ -219,7 +219,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
{
// Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, n is +0𝔽, or n is -0𝔽, return n.
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
@ -236,15 +236,15 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
// 21.3.2.26 Math.pow ( base, exponent ), https://tc39.es/ecma262/#sec-math.pow
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
{
auto base = TRY(vm.argument(0).to_number(global_object));
auto exponent = TRY(vm.argument(1).to_number(global_object));
return JS::exp(global_object, base, exponent);
auto base = TRY(vm.argument(0).to_number(vm));
auto exponent = TRY(vm.argument(1).to_number(vm));
return JS::exp(vm, base, exponent);
}
// 21.3.2.14 Math.exp ( x ), https://tc39.es/ecma262/#sec-math.exp
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
return Value(::exp(number.as_double()));
@ -253,7 +253,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
// 21.3.2.15 Math.expm1 ( x ), https://tc39.es/ecma262/#sec-math.expm1
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
return Value(::expm1(number.as_double()));
@ -262,7 +262,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
// 21.3.2.29 Math.sign ( x ), https://tc39.es/ecma262/#sec-math.sign
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_positive_zero())
return Value(0);
if (number.is_negative_zero())
@ -277,7 +277,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
// 21.3.2.11 Math.clz32 ( x ), https://tc39.es/ecma262/#sec-math.clz32
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
{
auto number = TRY(vm.argument(0).to_u32(global_object));
auto number = TRY(vm.argument(0).to_u32(vm));
if (number == 0)
return Value(32);
return Value(count_leading_zeroes(number));
@ -286,7 +286,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
// 21.3.2.2 Math.acos ( x ), https://tc39.es/ecma262/#sec-math.acos
JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan() || number.as_double() > 1 || number.as_double() < -1)
return js_nan();
if (number.as_double() == 1)
@ -297,7 +297,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::acos)
// 21.3.2.3 Math.acosh ( x ), https://tc39.es/ecma262/#sec-math.acosh
JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
{
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
if (value < 1)
return js_nan();
return Value(::acosh(value));
@ -306,7 +306,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::acosh)
// 21.3.2.4 Math.asin ( x ), https://tc39.es/ecma262/#sec-math.asin
JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
return Value(::asin(number.as_double()));
@ -315,13 +315,13 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::asin)
// 21.3.2.5 Math.asinh ( x ), https://tc39.es/ecma262/#sec-math.asinh
JS_DEFINE_NATIVE_FUNCTION(MathObject::asinh)
{
return Value(::asinh(TRY(vm.argument(0).to_number(global_object)).as_double()));
return Value(::asinh(TRY(vm.argument(0).to_number(vm)).as_double()));
}
// 21.3.2.6 Math.atan ( x ), https://tc39.es/ecma262/#sec-math.atan
JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan() || number.is_positive_zero() || number.is_negative_zero())
return number;
if (number.is_positive_infinity())
@ -334,7 +334,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan)
// 21.3.2.7 Math.atanh ( x ), https://tc39.es/ecma262/#sec-math.atanh
JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
{
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
if (value > 1 || value < -1)
return js_nan();
return Value(::atanh(value));
@ -343,7 +343,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atanh)
// 21.3.2.21 Math.log1p ( x ), https://tc39.es/ecma262/#sec-math.log1p
JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
{
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
if (value < -1)
return js_nan();
return Value(::log1p(value));
@ -352,7 +352,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log1p)
// 21.3.2.9 Math.cbrt ( x ), https://tc39.es/ecma262/#sec-math.cbrt
JS_DEFINE_NATIVE_FUNCTION(MathObject::cbrt)
{
return Value(::cbrt(TRY(vm.argument(0).to_number(global_object)).as_double()));
return Value(::cbrt(TRY(vm.argument(0).to_number(vm)).as_double()));
}
// 21.3.2.8 Math.atan2 ( y, x ), https://tc39.es/ecma262/#sec-math.atan2
@ -360,8 +360,8 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
{
auto constexpr three_quarters_pi = M_PI_4 + M_PI_2;
auto y = TRY(vm.argument(0).to_number(global_object));
auto x = TRY(vm.argument(1).to_number(global_object));
auto y = TRY(vm.argument(0).to_number(vm));
auto x = TRY(vm.argument(1).to_number(vm));
if (y.is_nan() || x.is_nan())
return js_nan();
@ -417,7 +417,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::atan2)
// 21.3.2.17 Math.fround ( x ), https://tc39.es/ecma262/#sec-math.fround
JS_DEFINE_NATIVE_FUNCTION(MathObject::fround)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
return Value((float)number.as_double());
@ -428,7 +428,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
{
Vector<Value> coerced;
for (size_t i = 0; i < vm.argument_count(); ++i)
coerced.append(TRY(vm.argument(i).to_number(global_object)));
coerced.append(TRY(vm.argument(i).to_number(vm)));
for (auto& number : coerced) {
if (number.is_positive_infinity() || number.is_negative_infinity())
@ -454,15 +454,15 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::hypot)
// 21.3.2.19 Math.imul ( x, y ), https://tc39.es/ecma262/#sec-math.imul
JS_DEFINE_NATIVE_FUNCTION(MathObject::imul)
{
auto a = TRY(vm.argument(0).to_u32(global_object));
auto b = TRY(vm.argument(1).to_u32(global_object));
auto a = TRY(vm.argument(0).to_u32(vm));
auto b = TRY(vm.argument(1).to_u32(vm));
return Value(static_cast<i32>(a * b));
}
// 21.3.2.20 Math.log ( x ), https://tc39.es/ecma262/#sec-math.log
JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
{
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
if (value < 0)
return js_nan();
return Value(::log(value));
@ -471,7 +471,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log)
// 21.3.2.23 Math.log2 ( x ), https://tc39.es/ecma262/#sec-math.log2
JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
{
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
if (value < 0)
return js_nan();
return Value(::log2(value));
@ -480,7 +480,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log2)
// 21.3.2.22 Math.log10 ( x ), https://tc39.es/ecma262/#sec-math.log10
JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
{
auto value = TRY(vm.argument(0).to_number(global_object)).as_double();
auto value = TRY(vm.argument(0).to_number(vm)).as_double();
if (value < 0)
return js_nan();
return Value(::log10(value));
@ -489,7 +489,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::log10)
// 21.3.2.31 Math.sinh ( x ), https://tc39.es/ecma262/#sec-math.sinh
JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
return Value(::sinh(number.as_double()));
@ -499,7 +499,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::sinh)
JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
{
// 1. Let n be ? ToNumber(x).
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
// 2. If n is NaN, return NaN.
if (number.is_nan())
@ -520,7 +520,7 @@ JS_DEFINE_NATIVE_FUNCTION(MathObject::cosh)
// 21.3.2.34 Math.tanh ( x ), https://tc39.es/ecma262/#sec-math.tanh
JS_DEFINE_NATIVE_FUNCTION(MathObject::tanh)
{
auto number = TRY(vm.argument(0).to_number(global_object));
auto number = TRY(vm.argument(0).to_number(vm));
if (number.is_nan())
return js_nan();
if (number.is_positive_infinity())