1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-28 10:15:07 +00:00

Kernel: Port the scheduler's ready queues to SpinLockProtectedValue

This commit is contained in:
Andreas Kling 2021-08-08 12:31:42 +02:00
parent a1c82041a6
commit a425f421ac

View file

@ -5,6 +5,7 @@
*/
#include <AK/ScopeGuard.h>
#include <AK/Singleton.h>
#include <AK/Time.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Debug.h>
@ -45,10 +46,14 @@ READONLY_AFTER_INIT static Process* s_colonel_process;
struct ThreadReadyQueue {
IntrusiveList<Thread, RawPtr<Thread>, &Thread::m_ready_queue_node> thread_list;
};
static SpinLock<u8> g_ready_queues_lock;
static u32 g_ready_queues_mask;
static constexpr u32 g_ready_queue_buckets = sizeof(g_ready_queues_mask) * 8;
READONLY_AFTER_INIT static ThreadReadyQueue* g_ready_queues; // g_ready_queue_buckets entries
struct ThreadReadyQueues {
u32 mask {};
static constexpr size_t count = sizeof(mask) * 8;
Array<ThreadReadyQueue, count> queues;
};
static Singleton<SpinLockProtectedValue<ThreadReadyQueues>> g_ready_queues;
static TotalTimeScheduled g_total_time_scheduled;
static SpinLock<u8> g_total_time_scheduled_lock;
@ -66,8 +71,8 @@ static inline u32 thread_priority_to_priority_index(u32 thread_priority)
VERIFY(thread_priority >= THREAD_PRIORITY_MIN && thread_priority <= THREAD_PRIORITY_MAX);
constexpr u32 thread_priority_count = THREAD_PRIORITY_MAX - THREAD_PRIORITY_MIN + 1;
static_assert(thread_priority_count > 0);
auto priority_bucket = ((thread_priority_count - (thread_priority - THREAD_PRIORITY_MIN)) / thread_priority_count) * (g_ready_queue_buckets - 1);
VERIFY(priority_bucket < g_ready_queue_buckets);
auto priority_bucket = ((thread_priority_count - (thread_priority - THREAD_PRIORITY_MIN)) / thread_priority_count) * (ThreadReadyQueues::count - 1);
VERIFY(priority_bucket < ThreadReadyQueues::count);
return priority_bucket;
}
@ -75,88 +80,92 @@ Thread& Scheduler::pull_next_runnable_thread()
{
auto affinity_mask = 1u << Processor::id();
ScopedSpinLock lock(g_ready_queues_lock);
auto priority_mask = g_ready_queues_mask;
while (priority_mask != 0) {
auto priority = __builtin_ffsl(priority_mask);
VERIFY(priority > 0);
auto& ready_queue = g_ready_queues[--priority];
for (auto& thread : ready_queue.thread_list) {
VERIFY(thread.m_runnable_priority == (int)priority);
if (thread.is_active())
continue;
if (!(thread.affinity() & affinity_mask))
continue;
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
g_ready_queues_mask &= ~(1u << priority);
// Mark it as active because we are using this thread. This is similar
// to comparing it with Processor::current_thread, but when there are
// multiple processors there's no easy way to check whether the thread
// is actually still needed. This prevents accidental finalization when
// a thread is no longer in Running state, but running on another core.
return g_ready_queues->with([&](auto& ready_queues) -> Thread& {
auto priority_mask = ready_queues.mask;
while (priority_mask != 0) {
auto priority = __builtin_ffsl(priority_mask);
VERIFY(priority > 0);
auto& ready_queue = ready_queues.queues[--priority];
for (auto& thread : ready_queue.thread_list) {
VERIFY(thread.m_runnable_priority == (int)priority);
if (thread.is_active())
continue;
if (!(thread.affinity() & affinity_mask))
continue;
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
ready_queues.mask &= ~(1u << priority);
// Mark it as active because we are using this thread. This is similar
// to comparing it with Processor::current_thread, but when there are
// multiple processors there's no easy way to check whether the thread
// is actually still needed. This prevents accidental finalization when
// a thread is no longer in Running state, but running on another core.
// We need to mark it active here so that this thread won't be
// scheduled on another core if it were to be queued before actually
// switching to it.
// FIXME: Figure out a better way maybe?
thread.set_active(true);
return thread;
// We need to mark it active here so that this thread won't be
// scheduled on another core if it were to be queued before actually
// switching to it.
// FIXME: Figure out a better way maybe?
thread.set_active(true);
return thread;
}
priority_mask &= ~(1u << priority);
}
priority_mask &= ~(1u << priority);
}
return *Processor::idle_thread();
return *Processor::idle_thread();
});
}
Thread* Scheduler::peek_next_runnable_thread()
{
auto affinity_mask = 1u << Processor::id();
ScopedSpinLock lock(g_ready_queues_lock);
auto priority_mask = g_ready_queues_mask;
while (priority_mask != 0) {
auto priority = __builtin_ffsl(priority_mask);
VERIFY(priority > 0);
auto& ready_queue = g_ready_queues[--priority];
for (auto& thread : ready_queue.thread_list) {
VERIFY(thread.m_runnable_priority == (int)priority);
if (thread.is_active())
continue;
if (!(thread.affinity() & affinity_mask))
continue;
return &thread;
return g_ready_queues->with([&](auto& ready_queues) -> Thread* {
auto priority_mask = ready_queues.mask;
while (priority_mask != 0) {
auto priority = __builtin_ffsl(priority_mask);
VERIFY(priority > 0);
auto& ready_queue = ready_queues.queues[--priority];
for (auto& thread : ready_queue.thread_list) {
VERIFY(thread.m_runnable_priority == (int)priority);
if (thread.is_active())
continue;
if (!(thread.affinity() & affinity_mask))
continue;
return &thread;
}
priority_mask &= ~(1u << priority);
}
priority_mask &= ~(1u << priority);
}
// Unlike in pull_next_runnable_thread() we don't want to fall back to
// the idle thread. We just want to see if we have any other thread ready
// to be scheduled.
return nullptr;
// Unlike in pull_next_runnable_thread() we don't want to fall back to
// the idle thread. We just want to see if we have any other thread ready
// to be scheduled.
return nullptr;
});
}
bool Scheduler::dequeue_runnable_thread(Thread& thread, bool check_affinity)
{
if (thread.is_idle_thread())
return true;
ScopedSpinLock lock(g_ready_queues_lock);
auto priority = thread.m_runnable_priority;
if (priority < 0) {
VERIFY(!thread.m_ready_queue_node.is_in_list());
return false;
}
if (check_affinity && !(thread.affinity() & (1 << Processor::id())))
return false;
return g_ready_queues->with([&](auto& ready_queues) {
auto priority = thread.m_runnable_priority;
if (priority < 0) {
VERIFY(!thread.m_ready_queue_node.is_in_list());
return false;
}
VERIFY(g_ready_queues_mask & (1u << priority));
auto& ready_queue = g_ready_queues[priority];
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
g_ready_queues_mask &= ~(1u << priority);
return true;
if (check_affinity && !(thread.affinity() & (1 << Processor::id())))
return false;
VERIFY(ready_queues.mask & (1u << priority));
auto& ready_queue = ready_queues.queues[priority];
thread.m_runnable_priority = -1;
ready_queue.thread_list.remove(thread);
if (ready_queue.thread_list.is_empty())
ready_queues.mask &= ~(1u << priority);
return true;
});
}
void Scheduler::queue_runnable_thread(Thread& thread)
@ -166,15 +175,16 @@ void Scheduler::queue_runnable_thread(Thread& thread)
return;
auto priority = thread_priority_to_priority_index(thread.priority());
ScopedSpinLock lock(g_ready_queues_lock);
VERIFY(thread.m_runnable_priority < 0);
thread.m_runnable_priority = (int)priority;
VERIFY(!thread.m_ready_queue_node.is_in_list());
auto& ready_queue = g_ready_queues[priority];
bool was_empty = ready_queue.thread_list.is_empty();
ready_queue.thread_list.append(thread);
if (was_empty)
g_ready_queues_mask |= (1u << priority);
g_ready_queues->with([&](auto& ready_queues) {
VERIFY(thread.m_runnable_priority < 0);
thread.m_runnable_priority = (int)priority;
VERIFY(!thread.m_ready_queue_node.is_in_list());
auto& ready_queue = ready_queues.queues[priority];
bool was_empty = ready_queue.thread_list.is_empty();
ready_queue.thread_list.append(thread);
if (was_empty)
ready_queues.mask |= (1u << priority);
});
}
UNMAP_AFTER_INIT void Scheduler::start()
@ -411,7 +421,6 @@ UNMAP_AFTER_INIT void Scheduler::initialize()
RefPtr<Thread> idle_thread;
g_finalizer_wait_queue = new WaitQueue;
g_ready_queues = new ThreadReadyQueue[g_ready_queue_buckets];
g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop, nullptr, 1, Process::RegisterProcess::No).leak_ref();