1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-19 00:55:08 +00:00

Kernel: Refactor MemoryManager to use a Bitmap rather than a Vector

This significantly reduces the pressure on the kernel heap when
allocating a lot of pages.

Previously at about 250MB allocated, the free page list would outgrow
the kernel's heap. Given that there is no longer a page list, this does
not happen.

The next barrier will be the kernel memory used by the page records for
in-use memory. This kicks in at about 1GB.
This commit is contained in:
Conrad Pankoff 2019-06-11 21:13:02 +10:00 committed by Andreas Kling
parent 1a77dfed23
commit aee9317d86
8 changed files with 278 additions and 51 deletions

View file

@ -12,8 +12,6 @@
//#define PAGE_FAULT_DEBUG
static MemoryManager* s_the;
unsigned MemoryManager::s_user_physical_pages_in_existence;
unsigned MemoryManager::s_super_physical_pages_in_existence;
MemoryManager& MM
{
@ -78,6 +76,14 @@ void MemoryManager::initialize_paging()
// 5 MB -> 0xc0000000 Userspace physical pages (available for allocation!)
// 0xc0000000-0xffffffff Kernel-only linear address space
#ifdef MM_DEBUG
dbgprintf("MM: Quickmap will use %p\n", m_quickmap_addr.get());
#endif
m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
RetainPtr<PhysicalRegion> region = nullptr;
bool region_is_super = false;
for (auto* mmap = (multiboot_memory_map_t*)multiboot_info_ptr->mmap_addr; (unsigned long)mmap < multiboot_info_ptr->mmap_addr + multiboot_info_ptr->mmap_length; mmap = (multiboot_memory_map_t*)((unsigned long)mmap + mmap->size + sizeof(mmap->size))) {
kprintf("MM: Multiboot mmap: base_addr = 0x%x%08x, length = 0x%x%08x, type = 0x%x\n",
(dword)(mmap->addr >> 32),
@ -88,26 +94,48 @@ void MemoryManager::initialize_paging()
if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE)
continue;
// FIXME: Maybe make use of stuff below the 1MB mark?
if (mmap->addr < (1 * MB))
continue;
for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
if (page_base < (4 * MB)) {
// Skip over pages managed by kmalloc.
continue;
}
#ifdef MM_DEBUG
kprintf("MM: considering memory at %p - %p\n",
(dword)mmap->addr, (dword)(mmap->addr + mmap->len));
#endif
if (page_base < (5 * MB))
m_free_supervisor_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(page_base), true));
else
m_free_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(page_base), false));
for (size_t page_base = mmap->addr; page_base < (mmap->addr + mmap->len); page_base += PAGE_SIZE) {
auto addr = PhysicalAddress(page_base);
if (page_base < 4 * MB) {
// nothing
} else if (page_base >= 4 * MB && page_base < 5 * MB) {
if (region.is_null() || !region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_super_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_super_physical_regions.last();
region_is_super = true;
} else {
region->expand(region->lower(), addr);
}
} else {
if (region.is_null() || region_is_super || region->upper().offset(PAGE_SIZE) != addr) {
m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
region = m_user_physical_regions.last();
region_is_super = false;
} else {
region->expand(region->lower(), addr);
}
}
}
}
m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
for (auto& region : m_super_physical_regions)
m_super_physical_pages += region->finalize_capacity();
for (auto& region : m_user_physical_regions)
m_user_physical_pages += region->finalize_capacity();
#ifdef MM_DEBUG
dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
dbgprintf("MM: Installing page directory\n");
#endif
@ -282,7 +310,7 @@ bool MemoryManager::zero_page(Region& region, unsigned page_index_in_region)
remap_region_page(region, page_index_in_region, true);
return true;
}
auto physical_page = allocate_physical_page(ShouldZeroFill::Yes);
auto physical_page = allocate_user_physical_page(ShouldZeroFill::Yes);
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> ZERO P%x\n", physical_page->paddr().get());
#endif
@ -309,7 +337,7 @@ bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
dbgprintf(" >> It's a COW page and it's time to COW!\n");
#endif
auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
auto physical_page = allocate_physical_page(ShouldZeroFill::No);
auto physical_page = allocate_user_physical_page(ShouldZeroFill::No);
byte* dest_ptr = quickmap_page(*physical_page);
const byte* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
#ifdef PAGE_FAULT_DEBUG
@ -360,7 +388,7 @@ bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_re
memset(page_buffer + nread, 0, PAGE_SIZE - nread);
}
cli();
vmo_page = allocate_physical_page(ShouldZeroFill::No);
vmo_page = allocate_user_physical_page(ShouldZeroFill::No);
if (vmo_page.is_null()) {
kprintf("MM: page_in_from_inode was unable to allocate a physical page\n");
return false;
@ -430,40 +458,114 @@ RetainPtr<Region> MemoryManager::allocate_kernel_region(size_t size, String&& na
return region;
}
RetainPtr<PhysicalPage> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill)
void MemoryManager::deallocate_user_physical_page(PhysicalPage& page)
{
for (auto& region : m_user_physical_regions) {
if (!region->contains(page)) {
kprintf(
"MM: deallocate_user_physical_page: %p not in %p -> %p\n",
page.paddr(), region->lower().get(), region->upper().get());
continue;
}
region->return_page(page);
m_user_physical_pages_used--;
return;
}
kprintf("MM: deallocate_user_physical_page couldn't figure out region for user page @ %p\n", page.paddr());
ASSERT_NOT_REACHED();
}
RetainPtr<PhysicalPage> MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill)
{
InterruptDisabler disabler;
if (1 > m_free_physical_pages.size()) {
kprintf("FUCK! No physical pages available.\n");
RetainPtr<PhysicalPage> page = nullptr;
for (auto& region : m_user_physical_regions) {
page = region->take_free_page(false);
if (page.is_null())
continue;
}
if (!page) {
if (m_user_physical_regions.is_empty()) {
kprintf("MM: no user physical regions available (?)\n");
}
kprintf("MM: no user physical pages available\n");
ASSERT_NOT_REACHED();
return {};
}
#ifdef MM_DEBUG
dbgprintf("MM: allocate_physical_page vending P%x (%u remaining)\n", m_free_physical_pages.last()->paddr().get(), m_free_physical_pages.size());
dbgprintf("MM: allocate_user_physical_page vending P%p\n", page->paddr().get());
#endif
auto physical_page = m_free_physical_pages.take_last();
if (should_zero_fill == ShouldZeroFill::Yes) {
auto* ptr = (dword*)quickmap_page(*physical_page);
auto* ptr = (dword*)quickmap_page(*page);
fast_dword_fill(ptr, 0, PAGE_SIZE / sizeof(dword));
unquickmap_page();
}
return physical_page;
m_user_physical_pages_used++;
return page;
}
void MemoryManager::deallocate_supervisor_physical_page(PhysicalPage& page)
{
for (auto& region : m_super_physical_regions) {
if (!region->contains(page)) {
kprintf(
"MM: deallocate_supervisor_physical_page: %p not in %p -> %p\n",
page.paddr(), region->lower().get(), region->upper().get());
continue;
}
region->return_page(page);
m_super_physical_pages_used--;
return;
}
kprintf("MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ %p\n", page.paddr());
ASSERT_NOT_REACHED();
}
RetainPtr<PhysicalPage> MemoryManager::allocate_supervisor_physical_page()
{
InterruptDisabler disabler;
if (1 > m_free_supervisor_physical_pages.size()) {
kprintf("FUCK! No physical pages available.\n");
RetainPtr<PhysicalPage> page = nullptr;
for (auto& region : m_super_physical_regions) {
page = region->take_free_page(true);
if (page.is_null())
continue;
}
if (!page) {
if (m_super_physical_regions.is_empty()) {
kprintf("MM: no super physical regions available (?)\n");
}
kprintf("MM: no super physical pages available\n");
ASSERT_NOT_REACHED();
return {};
}
#ifdef MM_DEBUG
dbgprintf("MM: allocate_supervisor_physical_page vending P%x (%u remaining)\n", m_free_supervisor_physical_pages.last()->paddr().get(), m_free_supervisor_physical_pages.size());
dbgprintf("MM: allocate_supervisor_physical_page vending P%p\n", page->paddr().get());
#endif
auto physical_page = m_free_supervisor_physical_pages.take_last();
fast_dword_fill((dword*)physical_page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
return physical_page;
fast_dword_fill((dword*)page->paddr().as_ptr(), 0, PAGE_SIZE / sizeof(dword));
m_super_physical_pages_used++;
return page;
}
void MemoryManager::enter_process_paging_scope(Process& process)