1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-25 14:37:46 +00:00

Kernel: Implement lazy committed page allocation

By designating a committed page pool we can guarantee to have physical
pages available for lazy allocation in mappings. However, when forking
we will overcommit. The assumption is that worst-case it's better for
the fork to die due to insufficient physical memory on COW access than
the parent that created the region. If a fork wants to ensure that all
memory is available (trigger a commit) then it can use madvise.

This also means that fork now can gracefully fail if we don't have
enough physical pages available.
This commit is contained in:
Tom 2020-09-04 21:12:25 -06:00 committed by Andreas Kling
parent e21cc4cff6
commit b2a52f6208
20 changed files with 329 additions and 67 deletions

View file

@ -44,10 +44,10 @@ inline LogStream& operator<<(const LogStream& stream, const VolatilePageRange& r
static void dump_volatile_page_ranges(const Vector<VolatilePageRange>& ranges)
{
for (size_t i = 0; i < ranges.size(); i++) {
const auto& range = ranges[i];
klog() << " [" << i << "] " << range;
}
for (size_t i = 0; i < ranges.size(); i++) {
const auto& range = ranges[i];
klog() << " [" << i << "] " << range;
}
}
#endif
@ -185,7 +185,7 @@ bool VolatilePageRanges::intersects(const VolatilePageRange& range) const
}
PurgeablePageRanges::PurgeablePageRanges(const VMObject& vmobject)
: m_volatile_ranges({0, vmobject.is_purgeable() ? static_cast<const PurgeableVMObject&>(vmobject).page_count() : 0})
: m_volatile_ranges({ 0, vmobject.is_purgeable() ? static_cast<const PurgeableVMObject&>(vmobject).page_count() : 0 })
{
}
@ -193,8 +193,23 @@ bool PurgeablePageRanges::add_volatile_range(const VolatilePageRange& range)
{
if (range.is_empty())
return false;
// Since we may need to call into PurgeableVMObject we need to acquire
// its lock as well, and acquire it first. This is important so that
// we don't deadlock when a page fault (e.g. on another processor)
// happens that is meant to lazy-allocate a committed page. It would
// call into PurgeableVMObject::range_made_volatile, which then would
// also call into this object and need to acquire m_lock. By acquiring
// the vmobject lock first in both cases, we avoid deadlocking.
// We can access m_vmobject without any locks for that purpose because
// add_volatile_range and remove_volatile_range can only be called
// by same object that calls set_vmobject.
ScopedSpinLock vmobject_lock(m_vmobject->m_lock);
ScopedSpinLock lock(m_volatile_ranges_lock);
return m_volatile_ranges.add(range);
bool added = m_volatile_ranges.add(range);
if (added)
m_vmobject->range_made_volatile(range);
return added;
}
bool PurgeablePageRanges::remove_volatile_range(const VolatilePageRange& range, bool& was_purged)
@ -202,6 +217,7 @@ bool PurgeablePageRanges::remove_volatile_range(const VolatilePageRange& range,
if (range.is_empty())
return false;
ScopedSpinLock lock(m_volatile_ranges_lock);
ASSERT(m_vmobject);
return m_volatile_ranges.remove(range, was_purged);
}
@ -213,35 +229,73 @@ bool PurgeablePageRanges::is_volatile_range(const VolatilePageRange& range) cons
return m_volatile_ranges.intersects(range);
}
bool PurgeablePageRanges::is_volatile(size_t index) const
{
ScopedSpinLock lock(m_volatile_ranges_lock);
return m_volatile_ranges.contains(index);
}
void PurgeablePageRanges::set_was_purged(const VolatilePageRange& range)
{
ScopedSpinLock lock(m_volatile_ranges_lock);
m_volatile_ranges.add({range.base, range.count, true});
m_volatile_ranges.add({ range.base, range.count, true });
}
NonnullRefPtr<PurgeableVMObject> PurgeableVMObject::create_with_size(size_t size)
void PurgeablePageRanges::set_vmobject(PurgeableVMObject* vmobject)
{
// No lock needed here
if (vmobject) {
ASSERT(!m_vmobject);
m_vmobject = vmobject;
} else {
ASSERT(m_vmobject);
m_vmobject = nullptr;
}
}
RefPtr<PurgeableVMObject> PurgeableVMObject::create_with_size(size_t size)
{
// We need to attempt to commit before actually creating the object
if (!MM.commit_user_physical_pages(ceil_div(size, PAGE_SIZE)))
return {};
return adopt(*new PurgeableVMObject(size));
}
PurgeableVMObject::PurgeableVMObject(size_t size)
: AnonymousVMObject(size)
: AnonymousVMObject(size, false)
, m_unused_committed_pages(page_count())
{
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = MM.lazy_committed_page();
}
PurgeableVMObject::PurgeableVMObject(const PurgeableVMObject& other)
: AnonymousVMObject(other)
, m_purgeable_ranges() // do *not* clone this
, m_unused_committed_pages(other.m_unused_committed_pages)
{
// TODO: what about m_lock?
// We can't really "copy" a spinlock. But we're holding it. Clear in the clone
ASSERT(other.m_lock.is_locked());
m_lock.initialize();
}
PurgeableVMObject::~PurgeableVMObject()
{
if (m_unused_committed_pages > 0)
MM.uncommit_user_physical_pages(m_unused_committed_pages);
}
NonnullRefPtr<VMObject> PurgeableVMObject::clone()
RefPtr<VMObject> PurgeableVMObject::clone()
{
// We need to acquire our lock so we copy a sane state
ScopedSpinLock lock(m_lock);
if (m_unused_committed_pages > 0) {
// We haven't used up all committed pages. In order to be able
// to clone ourselves, we need to be able to commit the same number
// of pages first
if (!MM.commit_user_physical_pages(m_unused_committed_pages))
return {};
}
return adopt(*new PurgeableVMObject(*this));
}
@ -275,8 +329,10 @@ int PurgeableVMObject::purge_impl()
auto range_end = range.base + range.count;
for (size_t i = range.base; i < range_end; i++) {
auto& phys_page = m_physical_pages[i];
if (phys_page && !phys_page->is_shared_zero_page())
if (phys_page && !phys_page->is_shared_zero_page()) {
ASSERT(!phys_page->is_lazy_committed_page());
++purged_in_range;
}
phys_page = MM.shared_zero_page();
}
@ -291,7 +347,7 @@ int PurgeableVMObject::purge_impl()
} else {
klog() << "Purged " << purged_in_range << " pages from region " << region.name() << " (no ownership) at " << region.vaddr_from_page_index(range.base) << " - " << region.vaddr_from_page_index(range.base + range.count);
}
region.remap_page_range(range.base, range.count, false);
region.remap_page_range(range.base, range.count);
}
});
}
@ -303,6 +359,7 @@ int PurgeableVMObject::purge_impl()
void PurgeableVMObject::register_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges)
{
ScopedSpinLock lock(m_lock);
purgeable_page_ranges.set_vmobject(this);
ASSERT(!m_purgeable_ranges.contains_slow(&purgeable_page_ranges));
m_purgeable_ranges.append(&purgeable_page_ranges);
}
@ -313,6 +370,7 @@ void PurgeableVMObject::unregister_purgeable_page_ranges(PurgeablePageRanges& pu
for (size_t i = 0; i < m_purgeable_ranges.size(); i++) {
if (m_purgeable_ranges[i] != &purgeable_page_ranges)
continue;
purgeable_page_ranges.set_vmobject(nullptr);
m_purgeable_ranges.remove(i);
return;
}
@ -330,4 +388,72 @@ bool PurgeableVMObject::is_any_volatile() const
return false;
}
size_t PurgeableVMObject::remove_lazy_commit_pages(const VolatilePageRange& range)
{
ASSERT(m_lock.is_locked());
size_t removed_count = 0;
auto range_end = range.base + range.count;
for (size_t i = range.base; i < range_end; i++) {
auto& phys_page = m_physical_pages[i];
if (phys_page && phys_page->is_lazy_committed_page()) {
phys_page = MM.shared_zero_page();
removed_count++;
ASSERT(m_unused_committed_pages > 0);
m_unused_committed_pages--;
// if (--m_unused_committed_pages == 0)
// break;
}
}
return removed_count;
}
void PurgeableVMObject::range_made_volatile(const VolatilePageRange& range)
{
ASSERT(m_lock.is_locked());
if (m_unused_committed_pages == 0)
return;
// We need to check this range for any pages that are marked for
// lazy committed allocation and turn them into shared zero pages
// and also adjust the m_unused_committed_pages for each such page.
// Take into account all the other views as well.
size_t uncommit_page_count = 0;
for_each_volatile_range([&](const auto& r) {
auto intersected = range.intersected(r);
if (!intersected.is_empty()) {
uncommit_page_count += remove_lazy_commit_pages(intersected);
// if (m_unused_committed_pages == 0)
// return IterationDecision::Break;
}
return IterationDecision::Continue;
});
// Return those committed pages back to the system
if (uncommit_page_count > 0)
MM.uncommit_user_physical_pages(uncommit_page_count);
}
RefPtr<PhysicalPage> PurgeableVMObject::allocate_committed_page(size_t page_index)
{
{
ScopedSpinLock lock(m_lock);
ASSERT(m_unused_committed_pages > 0);
// We should't have any committed page tags in volatile regions
ASSERT([&]() {
for (auto* purgeable_ranges : m_purgeable_ranges) {
if (purgeable_ranges->is_volatile(page_index))
return false;
}
return true;
}());
m_unused_committed_pages--;
}
return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
}
}