1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 09:58:11 +00:00

LibWeb: Add canvas context2d roundRect

This commit is contained in:
Bastiaan van der Plaat 2023-10-16 17:29:08 +02:00 committed by Andreas Kling
parent efadee7e6e
commit b640747116
7 changed files with 231 additions and 4 deletions

View file

@ -213,4 +213,164 @@ void CanvasPath::rect(double x, double y, double w, double h)
m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
}
// https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect
WebIDL::ExceptionOr<void> CanvasPath::round_rect(double x, double y, double w, double h, Variant<double, Geometry::DOMPointInit, Vector<Variant<double, Geometry::DOMPointInit>>> radii)
{
using Radius = Variant<double, Geometry::DOMPointInit>;
// 1. If any of x, y, w, or h are infinite or NaN, then return.
if (!isfinite(x) || !isfinite(y) || !isfinite(w) || !isfinite(h))
return {};
// 2. If radii is an unrestricted double or DOMPointInit, then set radii to « radii ».
if (radii.has<double>() || radii.has<Geometry::DOMPointInit>()) {
Vector<Radius> radii_list;
if (radii.has<double>())
radii_list.append(radii.get<double>());
else
radii_list.append(radii.get<Geometry::DOMPointInit>());
radii = radii_list;
}
// 3. If radii is not a list of size one, two, three, or four, then throw a RangeError.
if (radii.get<Vector<Radius>>().is_empty() || radii.get<Vector<Radius>>().size() > 4)
return WebIDL::SimpleException { WebIDL::SimpleExceptionType::RangeError, "roundRect: Can have between 1 and 4 radii"sv };
// 4. Let normalizedRadii be an empty list.
Vector<Geometry::DOMPointInit> normalized_radii;
// 5. For each radius of radii:
for (auto const& radius : radii.get<Vector<Radius>>()) {
// 5.1. If radius is a DOMPointInit:
if (radius.has<Geometry::DOMPointInit>()) {
auto const& radius_as_dom_point = radius.get<Geometry::DOMPointInit>();
// 5.1.1. If radius["x"] or radius["y"] is infinite or NaN, then return.
if (!isfinite(radius_as_dom_point.x) || !isfinite(radius_as_dom_point.y))
return {};
// 5.1.2. If radius["x"] or radius["y"] is negative, then throw a RangeError.
if (radius_as_dom_point.x < 0 || radius_as_dom_point.y < 0)
return WebIDL::SimpleException { WebIDL::SimpleExceptionType::RangeError, "roundRect: Radius can't be negative"sv };
// 5.1.3. Otherwise, append radius to normalizedRadii.
normalized_radii.append(radius_as_dom_point);
}
// 5.2. If radius is a unrestricted double:
if (radius.has<double>()) {
auto radius_as_double = radius.get<double>();
// 5.2.1. If radius is infinite or NaN, then return.
if (!isfinite(radius_as_double))
return {};
// 5.2.2. If radius is negative, then throw a RangeError.
if (radius_as_double < 0)
return WebIDL::SimpleException { WebIDL::SimpleExceptionType::RangeError, "roundRect: Radius can't be negative"sv };
// 5.2.3. Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii.
normalized_radii.append(Geometry::DOMPointInit { radius_as_double, radius_as_double });
}
}
// 6. Let upperLeft, upperRight, lowerRight, and lowerLeft be null.
Geometry::DOMPointInit upper_left {};
Geometry::DOMPointInit upper_right {};
Geometry::DOMPointInit lower_right {};
Geometry::DOMPointInit lower_left {};
// 7. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3].
if (normalized_radii.size() == 4) {
upper_left = normalized_radii.at(0);
upper_right = normalized_radii.at(1);
lower_right = normalized_radii.at(2);
lower_left = normalized_radii.at(3);
}
// 8. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2].
if (normalized_radii.size() == 3) {
upper_left = normalized_radii.at(0);
upper_right = lower_left = normalized_radii.at(1);
lower_right = normalized_radii.at(2);
}
// 9. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1].
if (normalized_radii.size() == 2) {
upper_left = lower_right = normalized_radii.at(0);
upper_right = lower_left = normalized_radii.at(1);
}
// 10. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0].
if (normalized_radii.size() == 1)
upper_left = upper_right = lower_right = lower_left = normalized_radii.at(0);
// 11. Corner curves must not overlap. Scale all radii to prevent this:
// 11.1. Let top be upperLeft["x"] + upperRight["x"].
double top = upper_left.x + upper_right.x;
// 11.2. Let right be upperRight["y"] + lowerRight["y"].
double right = upper_right.y + lower_right.y;
// 11.3. Let bottom be lowerRight["x"] + lowerLeft["x"].
double bottom = lower_right.x + lower_left.x;
// 11.4. Let left be upperLeft["y"] + lowerLeft["y"].
double left = upper_left.y + lower_left.y;
// 11.5. Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left.
double scale = AK::min(AK::min(w / top, h / right), AK::min(w / bottom, h / left));
// 11.6. If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale.
if (scale < 1) {
upper_left.x *= scale;
upper_left.y *= scale;
upper_right.x *= scale;
upper_right.y *= scale;
lower_left.x *= scale;
lower_left.y *= scale;
lower_right.x *= scale;
lower_right.y *= scale;
}
// 12. Create a new subpath:
auto transform = active_transform();
bool large_arc = false;
bool sweep = true;
// 12.1. Move to the point (x + upperLeft["x"], y).
m_path.move_to(transform.map(Gfx::FloatPoint { x + upper_left.x, y }));
// 12.2. Draw a straight line to the point (x + w upperRight["x"], y).
m_path.line_to(transform.map(Gfx::FloatPoint { x + w - upper_right.x, y }));
// 12.3. Draw an arc to the point (x + w, y + upperRight["y"]).
m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x + w, y + upper_right.y }), { upper_right.x, upper_right.y }, transform.rotation(), large_arc, sweep);
// 12.4. Draw a straight line to the point (x + w, y + h lowerRight["y"]).
m_path.line_to(transform.map(Gfx::FloatPoint { x + w, y + h - lower_right.y }));
// 12.5. Draw an arc to the point (x + w lowerRight["x"], y + h).
m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x + w - lower_right.x, y + h }), { lower_right.x, lower_right.y }, transform.rotation(), large_arc, sweep);
// 12.6. Draw a straight line to the point (x + lowerLeft["x"], y + h).
m_path.line_to(transform.map(Gfx::FloatPoint { x + lower_left.x, y + h }));
// 12.7. Draw an arc to the point (x, y + h lowerLeft["y"]).
m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x, y + h - lower_left.y }), { lower_left.x, lower_left.y }, transform.rotation(), large_arc, sweep);
// 12.8. Draw a straight line to the point (x, y + upperLeft["y"]).
m_path.line_to(transform.map(Gfx::FloatPoint { x, y + upper_left.y }));
// 12.9. Draw an arc to the point (x + upperLeft["x"], y).
m_path.elliptical_arc_to(transform.map(Gfx::FloatPoint { x + upper_left.x, y }), { upper_left.x, upper_left.y }, transform.rotation(), large_arc, sweep);
// 13. Mark the subpath as closed.
m_path.close();
// 14. Create a new subpath with the point (x, y) as the only point in the subpath.
m_path.move_to(transform.map(Gfx::FloatPoint { x, y }));
return {};
}
}