1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-25 06:27:45 +00:00

LibSoftGPU: Vectorize the rest of the rasterizer pipeline

This commit is contained in:
Stephan Unverwerth 2022-01-01 22:11:50 +01:00 committed by Ali Mohammad Pur
parent 6f261d0362
commit b8e06ca757

View file

@ -31,12 +31,24 @@ using IntVector3 = Gfx::Vector3<int>;
using AK::SIMD::exp;
using AK::SIMD::expand4;
using AK::SIMD::f32x4;
using AK::SIMD::i32x4;
using AK::SIMD::load4_masked;
using AK::SIMD::maskbits;
using AK::SIMD::maskcount;
using AK::SIMD::none;
using AK::SIMD::store4_masked;
using AK::SIMD::to_f32x4;
constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c)
{
return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
}
constexpr static i32x4 edge_function4(const IntVector2& a, const IntVector2& b, const Vector2<i32x4>& c)
{
return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
}
template<typename T, typename U>
constexpr static auto interpolate(const T& v0, const T& v1, const T& v2, const Vector3<U>& barycentric_coords)
{
@ -126,8 +138,8 @@ static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& re
// Since the algorithm is based on blocks of uniform size, we need
// to ensure that our render_target size is actually a multiple of the block size
VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);
VERIFY((render_target.width() % 2) == 0);
VERIFY((render_target.height() % 2) == 0);
// Return if alpha testing is a no-op
if (options.enable_alpha_test && options.alpha_test_func == AlphaTestFunction::Never)
@ -181,6 +193,11 @@ static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& re
dst_factor_dst_color);
}
auto render_bounds = render_target.rect();
auto window_scissor_rect = scissor_box_to_window_coordinates(options.scissor_box, render_target.rect());
if (options.scissor_enabled)
render_bounds.intersect(window_scissor_rect);
// Obey top-left rule:
// This sets up "zero" for later pixel coverage tests.
// Depending on where on the triangle the edge is located
@ -195,39 +212,36 @@ static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& re
zero.set_y(0);
// This function calculates the 3 edge values for the pixel relative to the triangle.
auto calculate_edge_values = [v0, v1, v2](const IntVector2& p) -> IntVector3 {
auto calculate_edge_values4 = [v0, v1, v2](const Vector2<i32x4>& p) -> Vector3<i32x4> {
return {
edge_function(v1, v2, p),
edge_function(v2, v0, p),
edge_function(v0, v1, p),
edge_function4(v1, v2, p),
edge_function4(v2, v0, p),
edge_function4(v0, v1, p),
};
};
// This function tests whether a point as identified by its 3 edge values lies within the triangle
auto test_point = [zero](const IntVector3& edges) -> bool {
auto test_point4 = [zero](const Vector3<i32x4>& edges) -> i32x4 {
return edges.x() >= zero.x()
&& edges.y() >= zero.y()
&& edges.z() >= zero.z();
};
auto test_scissor4 = [window_scissor_rect](const Vector2<i32x4>& screen_coordinates) -> i32x4 {
return screen_coordinates.x() >= window_scissor_rect.x()
&& screen_coordinates.x() < window_scissor_rect.x() + window_scissor_rect.width()
&& screen_coordinates.y() >= window_scissor_rect.y()
&& screen_coordinates.y() < window_scissor_rect.y() + window_scissor_rect.height();
};
// Calculate block-based bounds
auto render_bounds = render_target.rect();
if (options.scissor_enabled)
render_bounds.intersect(scissor_box_to_window_coordinates(options.scissor_box, render_target.rect()));
// clang-format off
int const bx0 = max(render_bounds.left(), min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor) / RASTERIZER_BLOCK_SIZE;
int const bx1 = (min(render_bounds.right(), max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor)) / RASTERIZER_BLOCK_SIZE + 1;
int const by0 = max(render_bounds.top(), min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor) / RASTERIZER_BLOCK_SIZE;
int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor)) / RASTERIZER_BLOCK_SIZE + 1;
int const bx0 = max(render_bounds.left(), min(min(v0.x(), v1.x()), v2.x()) / subpixel_factor) & ~1;
int const bx1 = (min(render_bounds.right(), max(max(v0.x(), v1.x()), v2.x()) / subpixel_factor) & ~1) + 2;
int const by0 = max(render_bounds.top(), min(min(v0.y(), v1.y()), v2.y()) / subpixel_factor) & ~1;
int const by1 = (min(render_bounds.bottom(), max(max(v0.y(), v1.y()), v2.y()) / subpixel_factor) & ~1) + 2;
// clang-format on
u8 pixel_mask[RASTERIZER_BLOCK_SIZE];
static_assert(RASTERIZER_BLOCK_SIZE <= sizeof(decltype(*pixel_mask)) * 8, "RASTERIZER_BLOCK_SIZE must be smaller than the pixel_mask's width in bits");
FloatVector4 pixel_staging[RASTERIZER_BLOCK_SIZE][RASTERIZER_BLOCK_SIZE];
float depth_staging[RASTERIZER_BLOCK_SIZE][RASTERIZER_BLOCK_SIZE];
// Fog depths
float const vertex0_eye_absz = fabs(vertex0.eye_coordinates.z());
float const vertex1_eye_absz = fabs(vertex1.eye_coordinates.z());
@ -236,302 +250,224 @@ static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& re
// FIXME: implement stencil testing
// Iterate over all blocks within the bounds of the triangle
for (int by = by0; by < by1; by++) {
for (int bx = bx0; bx < bx1; bx++) {
for (int by = by0; by < by1; by += 2) {
for (int bx = bx0; bx < bx1; bx += 2) {
// Edge values of the 4 block corners
// clang-format off
auto b0 = calculate_edge_values(IntVector2{ bx, by } * RASTERIZER_BLOCK_SIZE * subpixel_factor);
auto b1 = calculate_edge_values(IntVector2{ bx + 1, by } * RASTERIZER_BLOCK_SIZE * subpixel_factor);
auto b2 = calculate_edge_values(IntVector2{ bx, by + 1 } * RASTERIZER_BLOCK_SIZE * subpixel_factor);
auto b3 = calculate_edge_values(IntVector2{ bx + 1, by + 1 } * RASTERIZER_BLOCK_SIZE * subpixel_factor);
// clang-format on
PixelQuad quad;
// If the whole block is outside any of the triangle edges we can discard it completely
// We test this by and'ing the relevant edge function values together for all block corners
// and checking if the negative sign bit is set for all of them
if ((b0.x() & b1.x() & b2.x() & b3.x()) & 0x80000000)
continue;
quad.screen_coordinates = {
i32x4 { bx, bx + 1, bx, bx + 1 },
i32x4 { by, by, by + 1, by + 1 },
};
if ((b0.y() & b1.y() & b2.y() & b3.y()) & 0x80000000)
continue;
auto edge_values = calculate_edge_values4(quad.screen_coordinates * subpixel_factor);
if ((b0.z() & b1.z() & b2.z() & b3.z()) & 0x80000000)
continue;
// edge value derivatives
auto dbdx = (b1 - b0) / RASTERIZER_BLOCK_SIZE;
auto dbdy = (b2 - b0) / RASTERIZER_BLOCK_SIZE;
// step edge value after each horizontal span: 1 down, BLOCK_SIZE left
auto step_y = dbdy - dbdx * RASTERIZER_BLOCK_SIZE;
int x0 = bx * RASTERIZER_BLOCK_SIZE;
int y0 = by * RASTERIZER_BLOCK_SIZE;
// Generate the coverage mask
if (!options.scissor_enabled && test_point(b0) && test_point(b1) && test_point(b2) && test_point(b3)) {
INCREASE_STATISTICS_COUNTER(g_num_pixels, RASTERIZER_BLOCK_SIZE * RASTERIZER_BLOCK_SIZE);
// The block is fully contained within the triangle. Fill the mask with all 1s
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++)
pixel_mask[y] = -1;
} else {
// The block overlaps at least one triangle edge.
// We need to test coverage of every pixel within the block.
auto coords = b0;
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
pixel_mask[y] = 0;
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx) {
if (test_point(coords) && (!options.scissor_enabled || render_bounds.contains(x0 + x, y0 + y))) {
INCREASE_STATISTICS_COUNTER(g_num_pixels, 1);
pixel_mask[y] |= 1 << x;
}
}
}
// Generate triangle coverage mask
quad.mask = test_point4(edge_values);
if (options.scissor_enabled) {
quad.mask &= test_scissor4(quad.screen_coordinates);
}
if (none(quad.mask))
continue;
INCREASE_STATISTICS_COUNTER(g_num_pixels, maskcount(quad.mask));
// Calculate barycentric coordinates from previously calculated edge values
quad.barycentrics = Vector3<f32x4> {
to_f32x4(edge_values.x()),
to_f32x4(edge_values.y()),
to_f32x4(edge_values.z()),
} * one_over_area;
float* depth_ptrs[4] = {
&depth_buffer.scanline(by)[bx],
&depth_buffer.scanline(by)[bx + 1],
&depth_buffer.scanline(by + 1)[bx],
&depth_buffer.scanline(by + 1)[bx + 1],
};
// AND the depth mask onto the coverage mask
if (options.enable_depth_test) {
int z_pass_count = 0;
auto coords = b0;
auto depth = load4_masked(depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
if (pixel_mask[y] == 0) {
coords += dbdx * RASTERIZER_BLOCK_SIZE;
continue;
}
quad.depth = interpolate(vertex0.window_coordinates.z(), vertex1.window_coordinates.z(), vertex2.window_coordinates.z(), quad.barycentrics);
// FIXME: Also apply depth_offset_factor which depends on the depth gradient
quad.depth += options.depth_offset_constant * NumericLimits<float>::epsilon();
auto* depth = &depth_buffer.scanline(y0 + y)[x0];
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, depth++) {
if (~pixel_mask[y] & (1 << x))
continue;
auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
float z = interpolate(vertex0.window_coordinates.z(), vertex1.window_coordinates.z(), vertex2.window_coordinates.z(), barycentric);
// FIXME: Also apply depth_offset_factor which depends on the depth gradient
z += options.depth_offset_constant * NumericLimits<float>::epsilon();
bool pass = false;
switch (options.depth_func) {
case DepthTestFunction::Always:
pass = true;
break;
case DepthTestFunction::Never:
pass = false;
break;
case DepthTestFunction::Greater:
pass = z > *depth;
break;
case DepthTestFunction::GreaterOrEqual:
pass = z >= *depth;
break;
case DepthTestFunction::NotEqual:
switch (options.depth_func) {
case DepthTestFunction::Always:
break;
case DepthTestFunction::Never:
quad.mask ^= quad.mask;
break;
case DepthTestFunction::Greater:
quad.mask &= quad.depth > depth;
break;
case DepthTestFunction::GreaterOrEqual:
quad.mask &= quad.depth >= depth;
break;
case DepthTestFunction::NotEqual:
#ifdef __SSE__
pass = z != *depth;
quad.mask &= quad.depth != depth;
#else
pass = bit_cast<u32>(z) != bit_cast<u32>(*depth);
quad.mask[0] = bit_cast<u32>(quad.depth[0]) != bit_cast<u32>(depth[0]) ? -1 : 0;
quad.mask[1] = bit_cast<u32>(quad.depth[1]) != bit_cast<u32>(depth[1]) ? -1 : 0;
quad.mask[2] = bit_cast<u32>(quad.depth[2]) != bit_cast<u32>(depth[2]) ? -1 : 0;
quad.mask[3] = bit_cast<u32>(quad.depth[3]) != bit_cast<u32>(depth[3]) ? -1 : 0;
#endif
break;
case DepthTestFunction::Equal:
break;
case DepthTestFunction::Equal:
#ifdef __SSE__
pass = z == *depth;
quad.mask &= quad.depth == depth;
#else
//
// This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
// compiled for the i386 target. When we calculate our depth value to be stored in the buffer,
// it is an 80-bit x87 floating point number, however, when stored into the DepthBuffer, this is
// truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
// used here the comparison fails.
// This could be solved by using a `long double` for the depth buffer, however this would take
// up significantly more space and is completely overkill for a depth buffer. As such, comparing
// the first 32-bits of this depth value is "good enough" that if we get a hit on it being
// equal, we can pretty much guarantee that it's actually equal.
//
pass = bit_cast<u32>(z) == bit_cast<u32>(*depth);
//
// This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
// compiled for the i386 target. When we calculate our depth value to be stored in the buffer,
// it is an 80-bit x87 floating point number, however, when stored into the DepthBuffer, this is
// truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
// used here the comparison fails.
// This could be solved by using a `long double` for the depth buffer, however this would take
// up significantly more space and is completely overkill for a depth buffer. As such, comparing
// the first 32-bits of this depth value is "good enough" that if we get a hit on it being
// equal, we can pretty much guarantee that it's actually equal.
//
quad.mask[0] = bit_cast<u32>(quad.depth[0]) == bit_cast<u32>(depth[0]) ? -1 : 0;
quad.mask[1] = bit_cast<u32>(quad.depth[1]) == bit_cast<u32>(depth[1]) ? -1 : 0;
quad.mask[2] = bit_cast<u32>(quad.depth[2]) == bit_cast<u32>(depth[2]) ? -1 : 0;
quad.mask[3] = bit_cast<u32>(quad.depth[3]) == bit_cast<u32>(depth[3]) ? -1 : 0;
#endif
break;
case DepthTestFunction::LessOrEqual:
pass = z <= *depth;
break;
case DepthTestFunction::Less:
pass = z < *depth;
break;
}
if (!pass) {
pixel_mask[y] ^= 1 << x;
continue;
}
depth_staging[y][x] = z;
z_pass_count++;
}
break;
case DepthTestFunction::LessOrEqual:
quad.mask &= quad.depth <= depth;
break;
case DepthTestFunction::Less:
quad.mask &= quad.depth < depth;
break;
}
// Nice, no pixels passed the depth test -> block rejected by early z
if (z_pass_count == 0)
if (none(quad.mask))
continue;
}
INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, maskcount(quad.mask));
// Draw the pixels according to the previously generated mask
auto coords = b0;
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y += 2, coords += step_y + dbdy) {
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x += 2, coords += dbdx + dbdx) {
auto const w_coordinates = Vector3<f32x4> {
expand4(vertex0.window_coordinates.w()),
expand4(vertex1.window_coordinates.w()),
expand4(vertex2.window_coordinates.w()),
};
PixelQuad quad;
auto const interpolated_reciprocal_w = interpolate(w_coordinates.x(), w_coordinates.y(), w_coordinates.z(), quad.barycentrics);
auto const interpolated_w = 1.0f / interpolated_reciprocal_w;
quad.barycentrics = quad.barycentrics * w_coordinates * interpolated_w;
auto a = coords;
auto b = coords + dbdx;
auto c = coords + dbdy;
auto d = coords + dbdx + dbdy;
// Perspective correct barycentric coordinates
auto barycentric = Vector3<f32x4> {
f32x4 { float(a.x()), float(b.x()), float(c.x()), float(d.x()) },
f32x4 { float(a.y()), float(b.y()), float(c.y()), float(d.y()) },
f32x4 { float(a.z()), float(b.z()), float(c.z()), float(d.z()) },
} * one_over_area;
auto const w_coordinates = Vector3<f32x4> {
expand4(vertex0.window_coordinates.w()),
expand4(vertex1.window_coordinates.w()),
expand4(vertex2.window_coordinates.w()),
};
auto const interpolated_reciprocal_w = interpolate(w_coordinates.x(), w_coordinates.y(), w_coordinates.z(), barycentric);
auto const interpolated_w = 1.0f / interpolated_reciprocal_w;
barycentric = barycentric * w_coordinates * interpolated_w;
// FIXME: make this more generic. We want to interpolate more than just color and uv
if (options.shade_smooth) {
quad.vertex_color = interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), barycentric);
} else {
quad.vertex_color = expand4(vertex0.color);
}
quad.uv = interpolate(expand4(vertex0.tex_coord), expand4(vertex1.tex_coord), expand4(vertex2.tex_coord), barycentric);
// Calculate depth of fragment for fog
//
// OpenGL 1.5 spec chapter 3.10: "An implementation may choose to approximate the
// eye-coordinate distance from the eye to each fragment center by |Ze|."
quad.fog_depth = interpolate(expand4(vertex0_eye_absz), expand4(vertex1_eye_absz), expand4(vertex2_eye_absz), barycentric);
pixel_shader(quad);
INCREASE_STATISTICS_COUNTER(g_num_pixels_shaded, 1);
pixel_staging[y][x] = { quad.out_color.x()[0], quad.out_color.y()[0], quad.out_color.z()[0], quad.out_color.w()[0] };
pixel_staging[y][x + 1] = { quad.out_color.x()[1], quad.out_color.y()[1], quad.out_color.z()[1], quad.out_color.w()[1] };
pixel_staging[y + 1][x] = { quad.out_color.x()[2], quad.out_color.y()[2], quad.out_color.z()[2], quad.out_color.w()[2] };
pixel_staging[y + 1][x + 1] = { quad.out_color.x()[3], quad.out_color.y()[3], quad.out_color.z()[3], quad.out_color.w()[3] };
}
// FIXME: make this more generic. We want to interpolate more than just color and uv
if (options.shade_smooth) {
quad.vertex_color = interpolate(expand4(vertex0.color), expand4(vertex1.color), expand4(vertex2.color), quad.barycentrics);
} else {
quad.vertex_color = expand4(vertex0.color);
}
quad.uv = interpolate(expand4(vertex0.tex_coord), expand4(vertex1.tex_coord), expand4(vertex2.tex_coord), quad.barycentrics);
// Calculate depth of fragment for fog
//
// OpenGL 1.5 spec chapter 3.10: "An implementation may choose to approximate the
// eye-coordinate distance from the eye to each fragment center by |Ze|."
quad.fog_depth = interpolate(expand4(vertex0_eye_absz), expand4(vertex1_eye_absz), expand4(vertex2_eye_absz), quad.barycentrics);
pixel_shader(quad);
if (options.enable_alpha_test && options.alpha_test_func != AlphaTestFunction::Always) {
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
if (pixel_mask[y] == 0)
continue;
auto src = pixel_staging[y];
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++) {
if (~pixel_mask[y] & (1 << x))
continue;
bool passed = true;
switch (options.alpha_test_func) {
case AlphaTestFunction::Less:
passed = src->w() < options.alpha_test_ref_value;
break;
case AlphaTestFunction::Equal:
passed = src->w() == options.alpha_test_ref_value;
break;
case AlphaTestFunction::LessOrEqual:
passed = src->w() <= options.alpha_test_ref_value;
break;
case AlphaTestFunction::Greater:
passed = src->w() > options.alpha_test_ref_value;
break;
case AlphaTestFunction::NotEqual:
passed = src->w() != options.alpha_test_ref_value;
break;
case AlphaTestFunction::GreaterOrEqual:
passed = src->w() >= options.alpha_test_ref_value;
break;
case AlphaTestFunction::Never:
case AlphaTestFunction::Always:
VERIFY_NOT_REACHED();
}
if (!passed)
pixel_mask[y] ^= (1 << x);
}
switch (options.alpha_test_func) {
case AlphaTestFunction::Less:
quad.mask &= quad.out_color.w() < options.alpha_test_ref_value;
break;
case AlphaTestFunction::Equal:
quad.mask &= quad.out_color.w() == options.alpha_test_ref_value;
break;
case AlphaTestFunction::LessOrEqual:
quad.mask &= quad.out_color.w() <= options.alpha_test_ref_value;
break;
case AlphaTestFunction::Greater:
quad.mask &= quad.out_color.w() > options.alpha_test_ref_value;
break;
case AlphaTestFunction::NotEqual:
quad.mask &= quad.out_color.w() != options.alpha_test_ref_value;
break;
case AlphaTestFunction::GreaterOrEqual:
quad.mask &= quad.out_color.w() >= options.alpha_test_ref_value;
break;
case AlphaTestFunction::Never:
case AlphaTestFunction::Always:
VERIFY_NOT_REACHED();
}
}
// Write to depth buffer
if (options.enable_depth_test && options.enable_depth_write) {
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
if (pixel_mask[y] == 0)
continue;
auto* depth = &depth_buffer.scanline(y0 + y)[x0];
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, depth++) {
if (~pixel_mask[y] & (1 << x))
continue;
*depth = depth_staging[y][x];
}
}
store4_masked(quad.depth, depth_ptrs[0], depth_ptrs[1], depth_ptrs[2], depth_ptrs[3], quad.mask);
}
// We will not update the color buffer at all
if (!options.color_mask || !options.enable_color_write)
continue;
Gfx::RGBA32* color_ptrs[4] = {
&render_target.scanline(by)[bx],
&render_target.scanline(by)[bx + 1],
&render_target.scanline(by + 1)[bx],
&render_target.scanline(by + 1)[bx + 1],
};
int bits = maskbits(quad.mask);
if (options.enable_blending) {
INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, maskcount(quad.mask));
// Blend color values from pixel_staging into render_target
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
auto src = pixel_staging[y];
auto dst = &render_target.scanline(y0 + y)[x0];
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
if (~pixel_mask[y] & (1 << x))
continue;
FloatVector4 dst_aos[4] {
bits & 1 ? to_vec4(*color_ptrs[0]) : FloatVector4 { 0, 0, 0, 0 },
bits & 2 ? to_vec4(*color_ptrs[1]) : FloatVector4 { 0, 0, 0, 0 },
bits & 4 ? to_vec4(*color_ptrs[2]) : FloatVector4 { 0, 0, 0, 0 },
bits & 8 ? to_vec4(*color_ptrs[3]) : FloatVector4 { 0, 0, 0, 0 },
};
auto float_dst = to_vec4(*dst);
auto dst = Vector4<f32x4> {
f32x4 { dst_aos[0].x(), dst_aos[1].x(), dst_aos[2].x(), dst_aos[3].x() },
f32x4 { dst_aos[0].y(), dst_aos[1].y(), dst_aos[2].y(), dst_aos[3].y() },
f32x4 { dst_aos[0].z(), dst_aos[1].z(), dst_aos[2].z(), dst_aos[3].z() },
f32x4 { dst_aos[0].w(), dst_aos[1].w(), dst_aos[2].w(), dst_aos[3].w() },
};
Vector4<f32x4> const& src = quad.out_color;
auto src_factor = src_constant
+ *src * src_factor_src_color
+ FloatVector4(src->w(), src->w(), src->w(), src->w()) * src_factor_src_alpha
+ float_dst * src_factor_dst_color
+ FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * src_factor_dst_alpha;
auto src_factor = expand4(src_constant)
+ src * src_factor_src_color
+ Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * src_factor_src_alpha
+ dst * src_factor_dst_color
+ Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * src_factor_dst_alpha;
auto dst_factor = dst_constant
+ *src * dst_factor_src_color
+ FloatVector4(src->w(), src->w(), src->w(), src->w()) * dst_factor_src_alpha
+ float_dst * dst_factor_dst_color
+ FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * dst_factor_dst_alpha;
auto dst_factor = expand4(dst_constant)
+ src * dst_factor_src_color
+ Vector4<f32x4> { src.w(), src.w(), src.w(), src.w() } * dst_factor_src_alpha
+ dst * dst_factor_dst_color
+ Vector4<f32x4> { dst.w(), dst.w(), dst.w(), dst.w() } * dst_factor_dst_alpha;
*dst = (*dst & ~options.color_mask) | (to_rgba32(*src * src_factor + float_dst * dst_factor) & options.color_mask);
INCREASE_STATISTICS_COUNTER(g_num_pixels_blended, 1);
}
}
} else {
// Copy color values from pixel_staging into render_target
for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
auto src = pixel_staging[y];
auto dst = &render_target.scanline(y + y0)[x0];
for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
if (~pixel_mask[y] & (1 << x))
continue;
*dst = (*dst & ~options.color_mask) | (to_rgba32(*src) & options.color_mask);
}
}
quad.out_color = src * src_factor + dst * dst_factor;
}
if (bits & 1)
*color_ptrs[0] = to_rgba32(FloatVector4 { quad.out_color.x()[0], quad.out_color.y()[0], quad.out_color.z()[0], quad.out_color.w()[0] });
if (bits & 2)
*color_ptrs[1] = to_rgba32(FloatVector4 { quad.out_color.x()[1], quad.out_color.y()[1], quad.out_color.z()[1], quad.out_color.w()[1] });
if (bits & 4)
*color_ptrs[2] = to_rgba32(FloatVector4 { quad.out_color.x()[2], quad.out_color.y()[2], quad.out_color.z()[2], quad.out_color.w()[2] });
if (bits & 8)
*color_ptrs[3] = to_rgba32(FloatVector4 { quad.out_color.x()[3], quad.out_color.y()[3], quad.out_color.z()[3], quad.out_color.w()[3] });
}
}
}
@ -544,8 +480,8 @@ static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
}
Device::Device(const Gfx::IntSize& min_size)
: m_render_target { Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors() }
, m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
: m_render_target { Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, 2)).release_value_but_fixme_should_propagate_errors() }
, m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, 2))) }
{
m_options.scissor_box = m_render_target->rect();
}
@ -880,7 +816,7 @@ void Device::resize(const Gfx::IntSize& min_size)
{
wait_for_all_threads();
m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors();
m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, 2)).release_value_but_fixme_should_propagate_errors();
m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
}