mirror of
https://github.com/RGBCube/serenity
synced 2025-05-31 07:58:11 +00:00
LibM: Implement various functions.
Path from Anonymous.
This commit is contained in:
parent
e51c1aa3d4
commit
c13be2c7ea
3 changed files with 147 additions and 53 deletions
|
@ -3,13 +3,33 @@
|
|||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
template<size_t> constexpr double e_to_power();
|
||||
template<> constexpr double e_to_power<0>() { return 1; }
|
||||
template<size_t exponent> constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
|
||||
template<size_t>
|
||||
constexpr double e_to_power();
|
||||
template<>
|
||||
constexpr double e_to_power<0>() { return 1; }
|
||||
template<size_t exponent>
|
||||
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
|
||||
|
||||
template<size_t> constexpr size_t factorial();
|
||||
template<> constexpr size_t factorial<0>() { return 1; }
|
||||
template<size_t value> constexpr size_t factorial() { return value * factorial<value - 1>(); }
|
||||
template<size_t>
|
||||
constexpr size_t factorial();
|
||||
template<>
|
||||
constexpr size_t factorial<0>() { return 1; }
|
||||
template<size_t value>
|
||||
constexpr size_t factorial() { return value * factorial<value - 1>(); }
|
||||
|
||||
template<size_t>
|
||||
constexpr size_t product_even();
|
||||
template<>
|
||||
constexpr size_t product_even<2>() { return 2; }
|
||||
template<size_t value>
|
||||
constexpr size_t product_even() { return value * product_even<value - 2>(); }
|
||||
|
||||
template<size_t>
|
||||
constexpr size_t product_odd();
|
||||
template<>
|
||||
constexpr size_t product_odd<1>() { return 1; }
|
||||
template<size_t value>
|
||||
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
|
||||
|
||||
extern "C" {
|
||||
double trunc(double x)
|
||||
|
@ -67,7 +87,7 @@ double tanh(double x)
|
|||
return (exponentiated - 1) / (exponentiated + 1);
|
||||
}
|
||||
double plusX = exp(x);
|
||||
double minusX = exp(-x);
|
||||
double minusX = 1 / plusX;
|
||||
return (plusX - minusX) / (plusX + minusX);
|
||||
}
|
||||
|
||||
|
@ -79,29 +99,38 @@ double tan(double angle)
|
|||
double sqrt(double x)
|
||||
{
|
||||
double res;
|
||||
__asm__("fsqrt" : "=t"(res) : "0"(x));
|
||||
__asm__("fsqrt"
|
||||
: "=t"(res)
|
||||
: "0"(x));
|
||||
return res;
|
||||
}
|
||||
|
||||
double sinh(double x)
|
||||
{
|
||||
if (x > 0) {
|
||||
double exponentiated = exp(x);
|
||||
double exponentiated = exp(x);
|
||||
if (x > 0)
|
||||
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
|
||||
}
|
||||
return (exp(x) - exp(-x)) / 2;
|
||||
return (exponentiated - 1 / exponentiated) / 2;
|
||||
}
|
||||
|
||||
double log10(double)
|
||||
double log10(double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
return log(x) / M_LN10;
|
||||
}
|
||||
|
||||
double log(double)
|
||||
double log(double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
if (x < 0)
|
||||
return __builtin_nan("");
|
||||
if (x == 0)
|
||||
return -__builtin_huge_val();
|
||||
double y = 1 + 2 * (x - 1) / (x + 1);
|
||||
double exponentiated = exp(y);
|
||||
y = y + 2 * (x - exponentiated) / (x + exponentiated);
|
||||
exponentiated = exp(y);
|
||||
y = y + 2 * (x - exponentiated) / (x + exponentiated);
|
||||
exponentiated = exp(y);
|
||||
return y + 2 * (x - exponentiated) / (x + exponentiated);
|
||||
}
|
||||
|
||||
double fmod(double index, double period)
|
||||
|
@ -114,14 +143,21 @@ double exp(double exponent)
|
|||
double result = 1;
|
||||
if (exponent >= 1) {
|
||||
size_t integer_part = (size_t)exponent;
|
||||
if (integer_part & 1) result *= e_to_power<1>();
|
||||
if (integer_part & 2) result *= e_to_power<2>();
|
||||
if (integer_part & 1)
|
||||
result *= e_to_power<1>();
|
||||
if (integer_part & 2)
|
||||
result *= e_to_power<2>();
|
||||
if (integer_part > 3) {
|
||||
if (integer_part & 4) result *= e_to_power<4>();
|
||||
if (integer_part & 8) result *= e_to_power<8>();
|
||||
if (integer_part & 16) result *= e_to_power<16>();
|
||||
if (integer_part & 32) result *= e_to_power<32>();
|
||||
if (integer_part >= 64) return __builtin_huge_val();
|
||||
if (integer_part & 4)
|
||||
result *= e_to_power<4>();
|
||||
if (integer_part & 8)
|
||||
result *= e_to_power<8>();
|
||||
if (integer_part & 16)
|
||||
result *= e_to_power<16>();
|
||||
if (integer_part & 32)
|
||||
result *= e_to_power<32>();
|
||||
if (integer_part >= 64)
|
||||
return __builtin_huge_val();
|
||||
}
|
||||
exponent -= integer_part;
|
||||
} else if (exponent < 0)
|
||||
|
@ -140,35 +176,64 @@ double exp(double exponent)
|
|||
|
||||
double cosh(double x)
|
||||
{
|
||||
if (x < 0) {
|
||||
double exponentiated = exp(-x);
|
||||
double exponentiated = exp(-x);
|
||||
if (x < 0)
|
||||
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
|
||||
return (1 / exponentiated + exponentiated) / 2;
|
||||
}
|
||||
|
||||
double atan2(double y, double x)
|
||||
{
|
||||
if (x > 0)
|
||||
return atan(y / x);
|
||||
if (x == 0) {
|
||||
if (y > 0)
|
||||
return M_PI_2;
|
||||
if (y < 0)
|
||||
return -M_PI_2;
|
||||
return 0;
|
||||
}
|
||||
return (exp(x) + exp(-x)) / 2;
|
||||
if (y >= 0)
|
||||
return atan(y / x) + M_PI;
|
||||
return atan(y / x) - M_PI;
|
||||
}
|
||||
|
||||
double atan2(double, double)
|
||||
double atan(double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
if (x < 0)
|
||||
return -atan(-x);
|
||||
if (x > 1)
|
||||
return M_PI_2 - atan(1 / x);
|
||||
double squared = x * x;
|
||||
return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
|
||||
}
|
||||
|
||||
double atan(double)
|
||||
double asin(double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
if (x > 1 || x < -1)
|
||||
return __builtin_nan("");
|
||||
if (x > 0.5 || x < -0.5)
|
||||
return 2 * atan(x / (1 + sqrt(1 - x * x)));
|
||||
double squared = x * x;
|
||||
double value = x;
|
||||
double i = x * squared;
|
||||
value += i * product_odd<1>() / product_even<2>() / 3;
|
||||
i *= squared;
|
||||
value += i * product_odd<3>() / product_even<4>() / 5;
|
||||
i *= squared;
|
||||
value += i * product_odd<5>() / product_even<6>() / 7;
|
||||
i *= squared;
|
||||
value += i * product_odd<7>() / product_even<8>() / 9;
|
||||
i *= squared;
|
||||
value += i * product_odd<9>() / product_even<10>() / 11;
|
||||
i *= squared;
|
||||
value += i * product_odd<11>() / product_even<12>() / 13;
|
||||
return value;
|
||||
}
|
||||
|
||||
double asin(double)
|
||||
double acos(double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
double acos(double)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
return M_PI_2 - asin(x);
|
||||
}
|
||||
|
||||
double fabs(double value)
|
||||
|
@ -176,22 +241,19 @@ double fabs(double value)
|
|||
return value < 0 ? -value : value;
|
||||
}
|
||||
|
||||
double log2(double)
|
||||
double log2(double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
return log(x) / M_LN2;
|
||||
}
|
||||
|
||||
float log2f(float)
|
||||
float log2f(float x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
return log2(x);
|
||||
}
|
||||
|
||||
long double log2l(long double)
|
||||
long double log2l(long double x)
|
||||
{
|
||||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
return log2(x);
|
||||
}
|
||||
|
||||
double frexp(double, int*)
|
||||
|
@ -211,5 +273,4 @@ long double frexpl(long double, int*)
|
|||
ASSERT_NOT_REACHED();
|
||||
return 0;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue