mirror of
				https://github.com/RGBCube/serenity
				synced 2025-10-31 13:12:46 +00:00 
			
		
		
		
	LibGfx/JPEG: Use a look-up table for cosine values
This solution is a middle ground between re-computing `cos` every time and a much more mathematically complicated approach (as we have in the decoder). While still being far from optimal it already gives us a 10x improvement, not that bad :^) Co-authored-by: Tim Flynn <trflynn89@pm.me>
This commit is contained in:
		
							parent
							
								
									5056668ab2
								
							
						
					
					
						commit
						cc1bd2d2d9
					
				
					 1 changed files with 19 additions and 4 deletions
				
			
		|  | @ -136,20 +136,35 @@ public: | |||
|         return {}; | ||||
|     } | ||||
| 
 | ||||
|     static Array<double, 64> create_cosine_lookup_table() | ||||
|     { | ||||
|         static constexpr double pi_over_16 = AK::Pi<double> / 16; | ||||
| 
 | ||||
|         Array<double, 64> table; | ||||
| 
 | ||||
|         for (u8 u = 0; u < 8; ++u) { | ||||
|             for (u8 x = 0; x < 8; ++x) | ||||
|                 table[u * 8 + x] = cos((2 * x + 1) * u * pi_over_16); | ||||
|         } | ||||
| 
 | ||||
|         return table; | ||||
|     } | ||||
| 
 | ||||
|     void fdct_and_quantization() | ||||
|     { | ||||
|         static auto cosine_table = create_cosine_lookup_table(); | ||||
| 
 | ||||
|         for (auto& macroblock : m_macroblocks) { | ||||
|             constexpr double pi_over_16 = AK::Pi<double> / 16; | ||||
|             constexpr double inverse_sqrt_2 = M_SQRT1_2; | ||||
| 
 | ||||
|             auto const convert_one_component = [](i16 component[], QuantizationTable const& table) { | ||||
|             auto const convert_one_component = [&](i16 component[], QuantizationTable const& table) { | ||||
|                 Array<i16, 64> result {}; | ||||
| 
 | ||||
|                 auto const sum_xy = [&component](u8 u, u8 v) { | ||||
|                 auto const sum_xy = [&](u8 u, u8 v) { | ||||
|                     double sum {}; | ||||
|                     for (u8 x {}; x < 8; ++x) { | ||||
|                         for (u8 y {}; y < 8; ++y) | ||||
|                             sum += component[x * 8 + y] * cos((2 * x + 1) * u * pi_over_16) * cos((2 * y + 1) * v * pi_over_16); | ||||
|                             sum += component[x * 8 + y] * cosine_table[u * 8 + x] * cosine_table[v * 8 + y]; | ||||
|                     } | ||||
|                     return sum; | ||||
|                 }; | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Lucas CHOLLET
						Lucas CHOLLET