1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-24 21:37:34 +00:00

LibJS: Remove assertions that are now part of structured headers

This is an editorial change in the ECMA-262 spec.

See: 4fde514
This commit is contained in:
Linus Groh 2022-05-01 19:26:08 +02:00
parent 86e3840202
commit ce659e5eeb
6 changed files with 238 additions and 322 deletions

View file

@ -173,15 +173,13 @@ ThrowCompletionOr<Realm*> get_function_realm(GlobalObject& global_object, Functi
{ {
auto& vm = global_object.vm(); auto& vm = global_object.vm();
// 1. Assert: ! IsCallable(obj) is true. // 1. If obj has a [[Realm]] internal slot, then
// 2. If obj has a [[Realm]] internal slot, then
if (function.realm()) { if (function.realm()) {
// a. Return obj.[[Realm]]. // a. Return obj.[[Realm]].
return function.realm(); return function.realm();
} }
// 3. If obj is a bound function exotic object, then // 2. If obj is a bound function exotic object, then
if (is<BoundFunction>(function)) { if (is<BoundFunction>(function)) {
auto& bound_function = static_cast<BoundFunction const&>(function); auto& bound_function = static_cast<BoundFunction const&>(function);
@ -192,7 +190,7 @@ ThrowCompletionOr<Realm*> get_function_realm(GlobalObject& global_object, Functi
return get_function_realm(global_object, target); return get_function_realm(global_object, target);
} }
// 4. If obj is a Proxy exotic object, then // 3. If obj is a Proxy exotic object, then
if (is<ProxyObject>(function)) { if (is<ProxyObject>(function)) {
auto& proxy = static_cast<ProxyObject const&>(function); auto& proxy = static_cast<ProxyObject const&>(function);
@ -208,7 +206,7 @@ ThrowCompletionOr<Realm*> get_function_realm(GlobalObject& global_object, Functi
return get_function_realm(global_object, static_cast<FunctionObject const&>(proxy_target)); return get_function_realm(global_object, static_cast<FunctionObject const&>(proxy_target));
} }
// 5. Return the current Realm Record. // 4. Return the current Realm Record.
return vm.current_realm(); return vm.current_realm();
} }
@ -1161,7 +1159,6 @@ CanonicalIndex canonical_numeric_index_string(PropertyKey const& property_key, C
if (mode != CanonicalIndexMode::DetectNumericRoundtrip) if (mode != CanonicalIndexMode::DetectNumericRoundtrip)
return CanonicalIndex(CanonicalIndex::Type::Undefined, 0); return CanonicalIndex(CanonicalIndex::Type::Undefined, 0);
// 1. Assert: Type(argument) is String.
auto& argument = property_key.as_string(); auto& argument = property_key.as_string();
// Handle trivial cases without a full round trip test // Handle trivial cases without a full round trip test
@ -1194,17 +1191,17 @@ CanonicalIndex canonical_numeric_index_string(PropertyKey const& property_key, C
if (char first_non_zero = argument.characters()[current_index]; first_non_zero < '0' || first_non_zero > '9') if (char first_non_zero = argument.characters()[current_index]; first_non_zero < '0' || first_non_zero > '9')
return CanonicalIndex(CanonicalIndex::Type::Undefined, 0); return CanonicalIndex(CanonicalIndex::Type::Undefined, 0);
// 3. Let n be ! ToNumber(argument). // 2. Let n be ! ToNumber(argument).
char* endptr; char* endptr;
auto n = Value(strtod(argument.characters(), &endptr)); auto n = Value(strtod(argument.characters(), &endptr));
if (endptr != argument.characters() + argument.length()) if (endptr != argument.characters() + argument.length())
return CanonicalIndex(CanonicalIndex::Type::Undefined, 0); return CanonicalIndex(CanonicalIndex::Type::Undefined, 0);
// 4. If SameValue(! ToString(n), argument) is false, return undefined. // 3. If SameValue(! ToString(n), argument) is false, return undefined.
if (n.to_string_without_side_effects() != argument) if (n.to_string_without_side_effects() != argument)
return CanonicalIndex(CanonicalIndex::Type::Undefined, 0); return CanonicalIndex(CanonicalIndex::Type::Undefined, 0);
// 5. Return n. // 4. Return n.
return CanonicalIndex(CanonicalIndex::Type::Numeric, 0); return CanonicalIndex(CanonicalIndex::Type::Numeric, 0);
} }

View file

@ -29,13 +29,11 @@ ThrowCompletionOr<Array*> Array::create(GlobalObject& global_object, size_t leng
// 7.3.18 CreateArrayFromList ( elements ), https://tc39.es/ecma262/#sec-createarrayfromlist // 7.3.18 CreateArrayFromList ( elements ), https://tc39.es/ecma262/#sec-createarrayfromlist
Array* Array::create_from(GlobalObject& global_object, Vector<Value> const& elements) Array* Array::create_from(GlobalObject& global_object, Vector<Value> const& elements)
{ {
// 1. Assert: elements is a List whose elements are all ECMAScript language values. // 1. Let array be ! ArrayCreate(0).
// 2. Let array be ! ArrayCreate(0).
auto* array = MUST(Array::create(global_object, 0)); auto* array = MUST(Array::create(global_object, 0));
// 3. Let n be 0. // 2. Let n be 0.
// 4. For each element e of elements, do // 3. For each element e of elements, do
for (u32 n = 0; n < elements.size(); ++n) { for (u32 n = 0; n < elements.size(); ++n) {
// a. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(n)), e). // a. Perform ! CreateDataPropertyOrThrow(array, ! ToString(𝔽(n)), e).
MUST(array->create_data_property_or_throw(n, elements[n])); MUST(array->create_data_property_or_throw(n, elements[n]));
@ -43,7 +41,7 @@ Array* Array::create_from(GlobalObject& global_object, Vector<Value> const& elem
// b. Set n to n + 1. // b. Set n to n + 1.
} }
// 5. Return array. // 4. Return array.
return array; return array;
} }
@ -161,16 +159,15 @@ ThrowCompletionOr<bool> Array::internal_define_own_property(PropertyKey const& p
{ {
auto& vm = this->vm(); auto& vm = this->vm();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. If P is "length", then // 1. If P is "length", then
if (property_key.is_string() && property_key.as_string() == vm.names.length.as_string()) { if (property_key.is_string() && property_key.as_string() == vm.names.length.as_string()) {
// a. Return ? ArraySetLength(A, Desc). // a. Return ? ArraySetLength(A, Desc).
return set_length(property_descriptor); return set_length(property_descriptor);
} }
// 3. Else if P is an array index, then // 2. Else if P is an array index, then
if (property_key.is_number()) { if (property_key.is_number()) {
// a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length"). // a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
// b. Assert: ! IsDataDescriptor(oldLenDesc) is true. // b. Assert: ! IsDataDescriptor(oldLenDesc) is true.
@ -199,7 +196,7 @@ ThrowCompletionOr<bool> Array::internal_define_own_property(PropertyKey const& p
return true; return true;
} }
// 4. Return OrdinaryDefineOwnProperty(A, P, Desc). // 3. Return OrdinaryDefineOwnProperty(A, P, Desc).
return Object::internal_define_own_property(property_key, property_descriptor); return Object::internal_define_own_property(property_key, property_descriptor);
} }

View file

@ -82,12 +82,9 @@ ThrowCompletionOr<bool> Object::is_extensible() const
// 7.3.2 Get ( O, P ), https://tc39.es/ecma262/#sec-get-o-p // 7.3.2 Get ( O, P ), https://tc39.es/ecma262/#sec-get-o-p
ThrowCompletionOr<Value> Object::get(PropertyKey const& property_key) const ThrowCompletionOr<Value> Object::get(PropertyKey const& property_key) const
{ {
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 3. Return ? O.[[Get]](P, O). // 1. Return ? O.[[Get]](P, O).
return TRY(internal_get(property_key, this)); return TRY(internal_get(property_key, this));
} }
@ -96,38 +93,30 @@ ThrowCompletionOr<Value> Object::get(PropertyKey const& property_key) const
// 7.3.4 Set ( O, P, V, Throw ), https://tc39.es/ecma262/#sec-set-o-p-v-throw // 7.3.4 Set ( O, P, V, Throw ), https://tc39.es/ecma262/#sec-set-o-p-v-throw
ThrowCompletionOr<bool> Object::set(PropertyKey const& property_key, Value value, ShouldThrowExceptions throw_exceptions) ThrowCompletionOr<bool> Object::set(PropertyKey const& property_key, Value value, ShouldThrowExceptions throw_exceptions)
{ {
VERIFY(!value.is_empty());
auto& vm = this->vm(); auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
VERIFY(!value.is_empty());
// 3. Assert: Type(Throw) is Boolean. // 1. Let success be ? O.[[Set]](P, V, O).
// 4. Let success be ? O.[[Set]](P, V, O).
auto success = TRY(internal_set(property_key, value, this)); auto success = TRY(internal_set(property_key, value, this));
// 5. If success is false and Throw is true, throw a TypeError exception. // 2. If success is false and Throw is true, throw a TypeError exception.
if (!success && throw_exceptions == ShouldThrowExceptions::Yes) { if (!success && throw_exceptions == ShouldThrowExceptions::Yes) {
// FIXME: Improve/contextualize error message // FIXME: Improve/contextualize error message
return vm.throw_completion<TypeError>(global_object(), ErrorType::ObjectSetReturnedFalse); return vm.throw_completion<TypeError>(global_object(), ErrorType::ObjectSetReturnedFalse);
} }
// 6. Return success. // 3. Return success.
return success; return success;
} }
// 7.3.5 CreateDataProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createdataproperty // 7.3.5 CreateDataProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createdataproperty
ThrowCompletionOr<bool> Object::create_data_property(PropertyKey const& property_key, Value value) ThrowCompletionOr<bool> Object::create_data_property(PropertyKey const& property_key, Value value)
{ {
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }. // 1. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true }.
auto new_descriptor = PropertyDescriptor { auto new_descriptor = PropertyDescriptor {
.value = value, .value = value,
.writable = true, .writable = true,
@ -135,21 +124,17 @@ ThrowCompletionOr<bool> Object::create_data_property(PropertyKey const& property
.configurable = true, .configurable = true,
}; };
// 4. Return ? O.[[DefineOwnProperty]](P, newDesc). // 2. Return ? O.[[DefineOwnProperty]](P, newDesc).
return internal_define_own_property(property_key, new_descriptor); return internal_define_own_property(property_key, new_descriptor);
} }
// 7.3.6 CreateMethodProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createmethodproperty // 7.3.6 CreateMethodProperty ( O, P, V ), https://tc39.es/ecma262/#sec-createmethodproperty
ThrowCompletionOr<bool> Object::create_method_property(PropertyKey const& property_key, Value value) ThrowCompletionOr<bool> Object::create_method_property(PropertyKey const& property_key, Value value)
{ {
VERIFY(property_key.is_valid());
VERIFY(!value.is_empty()); VERIFY(!value.is_empty());
// 1. Assert: Type(O) is Object. // 1. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid());
// 3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.
auto new_descriptor = PropertyDescriptor { auto new_descriptor = PropertyDescriptor {
.value = value, .value = value,
.writable = true, .writable = true,
@ -157,39 +142,36 @@ ThrowCompletionOr<bool> Object::create_method_property(PropertyKey const& proper
.configurable = true, .configurable = true,
}; };
// 4. Return ? O.[[DefineOwnProperty]](P, newDesc). // 2. Return ? O.[[DefineOwnProperty]](P, newDesc).
return internal_define_own_property(property_key, new_descriptor); return internal_define_own_property(property_key, new_descriptor);
} }
// 7.3.7 CreateDataPropertyOrThrow ( O, P, V ), https://tc39.es/ecma262/#sec-createdatapropertyorthrow // 7.3.7 CreateDataPropertyOrThrow ( O, P, V ), https://tc39.es/ecma262/#sec-createdatapropertyorthrow
ThrowCompletionOr<bool> Object::create_data_property_or_throw(PropertyKey const& property_key, Value value) ThrowCompletionOr<bool> Object::create_data_property_or_throw(PropertyKey const& property_key, Value value)
{ {
VERIFY(!value.is_empty());
auto& vm = this->vm(); auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
VERIFY(!value.is_empty());
// 3. Let success be ? CreateDataProperty(O, P, V). // 1. Let success be ? CreateDataProperty(O, P, V).
auto success = TRY(create_data_property(property_key, value)); auto success = TRY(create_data_property(property_key, value));
// 4. If success is false, throw a TypeError exception. // 2. If success is false, throw a TypeError exception.
if (!success) { if (!success) {
// FIXME: Improve/contextualize error message // FIXME: Improve/contextualize error message
return vm.throw_completion<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse); return vm.throw_completion<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse);
} }
// 5. Return success. // 3. Return success.
return success; return success;
} }
// 7.3.8 CreateNonEnumerableDataPropertyOrThrow ( O, P, V ), https://tc39.es/ecma262/#sec-createnonenumerabledatapropertyorthrow // 7.3.8 CreateNonEnumerableDataPropertyOrThrow ( O, P, V ), https://tc39.es/ecma262/#sec-createnonenumerabledatapropertyorthrow
ThrowCompletionOr<bool> Object::create_non_enumerable_data_property_or_throw(PropertyKey const& property_key, Value value) ThrowCompletionOr<bool> Object::create_non_enumerable_data_property_or_throw(PropertyKey const& property_key, Value value)
{ {
VERIFY(!value.is_empty());
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
VERIFY(!value.is_empty());
// 1. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }. // 1. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }.
auto new_description = PropertyDescriptor { .value = value, .writable = true, .enumerable = false, .configurable = true }; auto new_description = PropertyDescriptor { .value = value, .writable = true, .enumerable = false, .configurable = true };
@ -203,21 +185,18 @@ ThrowCompletionOr<bool> Object::define_property_or_throw(PropertyKey const& prop
{ {
auto& vm = this->vm(); auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 3. Let success be ? O.[[DefineOwnProperty]](P, desc). // 1. Let success be ? O.[[DefineOwnProperty]](P, desc).
auto success = TRY(internal_define_own_property(property_key, property_descriptor)); auto success = TRY(internal_define_own_property(property_key, property_descriptor));
// 4. If success is false, throw a TypeError exception. // 2. If success is false, throw a TypeError exception.
if (!success) { if (!success) {
// FIXME: Improve/contextualize error message // FIXME: Improve/contextualize error message
return vm.throw_completion<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse); return vm.throw_completion<TypeError>(global_object(), ErrorType::ObjectDefineOwnPropertyReturnedFalse);
} }
// 5. Return success. // 3. Return success.
return success; return success;
} }
@ -226,52 +205,43 @@ ThrowCompletionOr<bool> Object::delete_property_or_throw(PropertyKey const& prop
{ {
auto& vm = this->vm(); auto& vm = this->vm();
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 3. Let success be ? O.[[Delete]](P). // 1. Let success be ? O.[[Delete]](P).
auto success = TRY(internal_delete(property_key)); auto success = TRY(internal_delete(property_key));
// 4. If success is false, throw a TypeError exception. // 2. If success is false, throw a TypeError exception.
if (!success) { if (!success) {
// FIXME: Improve/contextualize error message // FIXME: Improve/contextualize error message
return vm.throw_completion<TypeError>(global_object(), ErrorType::ObjectDeleteReturnedFalse); return vm.throw_completion<TypeError>(global_object(), ErrorType::ObjectDeleteReturnedFalse);
} }
// 5. Return success. // 3. Return success.
return success; return success;
} }
// 7.3.12 HasProperty ( O, P ), https://tc39.es/ecma262/#sec-hasproperty // 7.3.12 HasProperty ( O, P ), https://tc39.es/ecma262/#sec-hasproperty
ThrowCompletionOr<bool> Object::has_property(PropertyKey const& property_key) const ThrowCompletionOr<bool> Object::has_property(PropertyKey const& property_key) const
{ {
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 3. Return ? O.[[HasProperty]](P). // 1. Return ? O.[[HasProperty]](P).
return internal_has_property(property_key); return internal_has_property(property_key);
} }
// 7.3.13 HasOwnProperty ( O, P ), https://tc39.es/ecma262/#sec-hasownproperty // 7.3.13 HasOwnProperty ( O, P ), https://tc39.es/ecma262/#sec-hasownproperty
ThrowCompletionOr<bool> Object::has_own_property(PropertyKey const& property_key) const ThrowCompletionOr<bool> Object::has_own_property(PropertyKey const& property_key) const
{ {
// 1. Assert: Type(O) is Object.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 3. Let desc be ? O.[[GetOwnProperty]](P). // 1. Let desc be ? O.[[GetOwnProperty]](P).
auto descriptor = TRY(internal_get_own_property(property_key)); auto descriptor = TRY(internal_get_own_property(property_key));
// 4. If desc is undefined, return false. // 2. If desc is undefined, return false.
if (!descriptor.has_value()) if (!descriptor.has_value())
return false; return false;
// 5. Return true. // 3. Return true.
return true; return true;
} }
@ -280,22 +250,17 @@ ThrowCompletionOr<bool> Object::set_integrity_level(IntegrityLevel level)
{ {
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: Type(O) is Object. // 1. Let status be ? O.[[PreventExtensions]]().
// 2. Assert: level is either sealed or frozen.
VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen);
// 3. Let status be ? O.[[PreventExtensions]]().
auto status = TRY(internal_prevent_extensions()); auto status = TRY(internal_prevent_extensions());
// 4. If status is false, return false. // 2. If status is false, return false.
if (!status) if (!status)
return false; return false;
// 5. Let keys be ? O.[[OwnPropertyKeys]](). // 3. Let keys be ? O.[[OwnPropertyKeys]]().
auto keys = TRY(internal_own_property_keys()); auto keys = TRY(internal_own_property_keys());
// 6. If level is sealed, then // 4. If level is sealed, then
if (level == IntegrityLevel::Sealed) { if (level == IntegrityLevel::Sealed) {
// a. For each element k of keys, do // a. For each element k of keys, do
for (auto& key : keys) { for (auto& key : keys) {
@ -305,7 +270,7 @@ ThrowCompletionOr<bool> Object::set_integrity_level(IntegrityLevel level)
TRY(define_property_or_throw(property_key, { .configurable = false })); TRY(define_property_or_throw(property_key, { .configurable = false }));
} }
} }
// 7. Else, // 5. Else,
else { else {
// a. Assert: level is frozen. // a. Assert: level is frozen.
@ -338,30 +303,25 @@ ThrowCompletionOr<bool> Object::set_integrity_level(IntegrityLevel level)
} }
} }
// 8. Return true. // 6. Return true.
return true; return true;
} }
// 7.3.17 TestIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-testintegritylevel // 7.3.17 TestIntegrityLevel ( O, level ), https://tc39.es/ecma262/#sec-testintegritylevel
ThrowCompletionOr<bool> Object::test_integrity_level(IntegrityLevel level) const ThrowCompletionOr<bool> Object::test_integrity_level(IntegrityLevel level) const
{ {
// 1. Assert: Type(O) is Object. // 1. Let extensible be ? IsExtensible(O).
// 2. Assert: level is either sealed or frozen.
VERIFY(level == IntegrityLevel::Sealed || level == IntegrityLevel::Frozen);
// 3. Let extensible be ? IsExtensible(O).
auto extensible = TRY(is_extensible()); auto extensible = TRY(is_extensible());
// 4. If extensible is true, return false. // 2. If extensible is true, return false.
// 5. NOTE: If the object is extensible, none of its properties are examined. // 3. NOTE: If the object is extensible, none of its properties are examined.
if (extensible) if (extensible)
return false; return false;
// 6. Let keys be ? O.[[OwnPropertyKeys]](). // 4. Let keys be ? O.[[OwnPropertyKeys]]().
auto keys = TRY(internal_own_property_keys()); auto keys = TRY(internal_own_property_keys());
// 7. For each element k of keys, do // 5. For each element k of keys, do
for (auto& key : keys) { for (auto& key : keys) {
auto property_key = MUST(PropertyKey::from_value(global_object(), key)); auto property_key = MUST(PropertyKey::from_value(global_object(), key));
@ -383,7 +343,7 @@ ThrowCompletionOr<bool> Object::test_integrity_level(IntegrityLevel level) const
} }
} }
// 8. Return true. // 6. Return true.
return true; return true;
} }
@ -395,15 +355,13 @@ ThrowCompletionOr<MarkedVector<Value>> Object::enumerable_own_property_names(Pro
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: Type(O) is Object. // 1. Let ownKeys be ? O.[[OwnPropertyKeys]]().
// 2. Let ownKeys be ? O.[[OwnPropertyKeys]]().
auto own_keys = TRY(internal_own_property_keys()); auto own_keys = TRY(internal_own_property_keys());
// 3. Let properties be a new empty List. // 2. Let properties be a new empty List.
auto properties = MarkedVector<Value> { heap() }; auto properties = MarkedVector<Value> { heap() };
// 4. For each element key of ownKeys, do // 3. For each element key of ownKeys, do
for (auto& key : own_keys) { for (auto& key : own_keys) {
// a. If Type(key) is String, then // a. If Type(key) is String, then
if (!key.is_string()) if (!key.is_string())
@ -443,7 +401,7 @@ ThrowCompletionOr<MarkedVector<Value>> Object::enumerable_own_property_names(Pro
} }
} }
// 5. Return properties. // 4. Return properties.
return { move(properties) }; return { move(properties) };
} }
@ -602,23 +560,21 @@ ThrowCompletionOr<Object*> Object::internal_get_prototype_of() const
// 10.1.2 [[SetPrototypeOf]] ( V ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-setprototypeof-v // 10.1.2 [[SetPrototypeOf]] ( V ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-setprototypeof-v
ThrowCompletionOr<bool> Object::internal_set_prototype_of(Object* new_prototype) ThrowCompletionOr<bool> Object::internal_set_prototype_of(Object* new_prototype)
{ {
// 1. Assert: Either Type(V) is Object or Type(V) is Null. // 1. Let current be O.[[Prototype]].
// 2. If SameValue(V, current) is true, return true.
// 2. Let current be O.[[Prototype]].
// 3. If SameValue(V, current) is true, return true.
if (prototype() == new_prototype) if (prototype() == new_prototype)
return true; return true;
// 4. Let extensible be O.[[Extensible]]. // 3. Let extensible be O.[[Extensible]].
// 5. If extensible is false, return false. // 4. If extensible is false, return false.
if (!m_is_extensible) if (!m_is_extensible)
return false; return false;
// 6. Let p be V. // 5. Let p be V.
auto* prototype = new_prototype; auto* prototype = new_prototype;
// 7. Let done be false. // 6. Let done be false.
// 8. Repeat, while done is false, // 7. Repeat, while done is false,
while (prototype) { while (prototype) {
// a. If p is null, set done to true. // a. If p is null, set done to true.
@ -638,10 +594,10 @@ ThrowCompletionOr<bool> Object::internal_set_prototype_of(Object* new_prototype)
prototype = prototype->prototype(); prototype = prototype->prototype();
} }
// 9. Set O.[[Prototype]] to V. // 8. Set O.[[Prototype]] to V.
set_prototype(new_prototype); set_prototype(new_prototype);
// 10. Return true. // 9. Return true.
return true; return true;
} }
@ -665,21 +621,20 @@ ThrowCompletionOr<bool> Object::internal_prevent_extensions()
// 10.1.5 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getownproperty-p // 10.1.5 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-getownproperty-p
ThrowCompletionOr<Optional<PropertyDescriptor>> Object::internal_get_own_property(PropertyKey const& property_key) const ThrowCompletionOr<Optional<PropertyDescriptor>> Object::internal_get_own_property(PropertyKey const& property_key) const
{ {
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. If O does not have an own property with key P, return undefined. // 1. If O does not have an own property with key P, return undefined.
auto maybe_storage_entry = storage_get(property_key); auto maybe_storage_entry = storage_get(property_key);
if (!maybe_storage_entry.has_value()) if (!maybe_storage_entry.has_value())
return Optional<PropertyDescriptor> {}; return Optional<PropertyDescriptor> {};
// 3. Let D be a newly created Property Descriptor with no fields. // 2. Let D be a newly created Property Descriptor with no fields.
PropertyDescriptor descriptor; PropertyDescriptor descriptor;
// 4. Let X be O's own property whose key is P. // 3. Let X be O's own property whose key is P.
auto [value, attributes] = *maybe_storage_entry; auto [value, attributes] = *maybe_storage_entry;
// 5. If X is a data property, then // 4. If X is a data property, then
if (!value.is_accessor()) { if (!value.is_accessor()) {
// a. Set D.[[Value]] to the value of X's [[Value]] attribute. // a. Set D.[[Value]] to the value of X's [[Value]] attribute.
descriptor.value = value.value_or(js_undefined()); descriptor.value = value.value_or(js_undefined());
@ -687,7 +642,7 @@ ThrowCompletionOr<Optional<PropertyDescriptor>> Object::internal_get_own_propert
// b. Set D.[[Writable]] to the value of X's [[Writable]] attribute. // b. Set D.[[Writable]] to the value of X's [[Writable]] attribute.
descriptor.writable = attributes.is_writable(); descriptor.writable = attributes.is_writable();
} }
// 6. Else, // 5. Else,
else { else {
// a. Assert: X is an accessor property. // a. Assert: X is an accessor property.
@ -698,13 +653,13 @@ ThrowCompletionOr<Optional<PropertyDescriptor>> Object::internal_get_own_propert
descriptor.set = value.as_accessor().setter(); descriptor.set = value.as_accessor().setter();
} }
// 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute. // 6. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
descriptor.enumerable = attributes.is_enumerable(); descriptor.enumerable = attributes.is_enumerable();
// 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute. // 7. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
descriptor.configurable = attributes.is_configurable(); descriptor.configurable = attributes.is_configurable();
// 9. Return D. // 8. Return D.
return descriptor; return descriptor;
} }
@ -712,6 +667,7 @@ ThrowCompletionOr<Optional<PropertyDescriptor>> Object::internal_get_own_propert
ThrowCompletionOr<bool> Object::internal_define_own_property(PropertyKey const& property_key, PropertyDescriptor const& property_descriptor) ThrowCompletionOr<bool> Object::internal_define_own_property(PropertyKey const& property_key, PropertyDescriptor const& property_descriptor)
{ {
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 1. Let current be ? O.[[GetOwnProperty]](P). // 1. Let current be ? O.[[GetOwnProperty]](P).
auto current = TRY(internal_get_own_property(property_key)); auto current = TRY(internal_get_own_property(property_key));
@ -725,26 +681,25 @@ ThrowCompletionOr<bool> Object::internal_define_own_property(PropertyKey const&
// 10.1.7 [[HasProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-hasproperty-p // 10.1.7 [[HasProperty]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-hasproperty-p
ThrowCompletionOr<bool> Object::internal_has_property(PropertyKey const& property_key) const ThrowCompletionOr<bool> Object::internal_has_property(PropertyKey const& property_key) const
{ {
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Let hasOwn be ? O.[[GetOwnProperty]](P). // 1. Let hasOwn be ? O.[[GetOwnProperty]](P).
auto has_own = TRY(internal_get_own_property(property_key)); auto has_own = TRY(internal_get_own_property(property_key));
// 3. If hasOwn is not undefined, return true. // 2. If hasOwn is not undefined, return true.
if (has_own.has_value()) if (has_own.has_value())
return true; return true;
// 4. Let parent be ? O.[[GetPrototypeOf]](). // 3. Let parent be ? O.[[GetPrototypeOf]]().
auto* parent = TRY(internal_get_prototype_of()); auto* parent = TRY(internal_get_prototype_of());
// 5. If parent is not null, then // 4. If parent is not null, then
if (parent) { if (parent) {
// a. Return ? parent.[[HasProperty]](P). // a. Return ? parent.[[HasProperty]](P).
return parent->internal_has_property(property_key); return parent->internal_has_property(property_key);
} }
// 6. Return false. // 5. Return false.
return false; return false;
} }
@ -752,14 +707,12 @@ ThrowCompletionOr<bool> Object::internal_has_property(PropertyKey const& propert
ThrowCompletionOr<Value> Object::internal_get(PropertyKey const& property_key, Value receiver) const ThrowCompletionOr<Value> Object::internal_get(PropertyKey const& property_key, Value receiver) const
{ {
VERIFY(!receiver.is_empty()); VERIFY(!receiver.is_empty());
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Let desc be ? O.[[GetOwnProperty]](P). // 1. Let desc be ? O.[[GetOwnProperty]](P).
auto descriptor = TRY(internal_get_own_property(property_key)); auto descriptor = TRY(internal_get_own_property(property_key));
// 3. If desc is undefined, then // 2. If desc is undefined, then
if (!descriptor.has_value()) { if (!descriptor.has_value()) {
// a. Let parent be ? O.[[GetPrototypeOf]](). // a. Let parent be ? O.[[GetPrototypeOf]]().
auto* parent = TRY(internal_get_prototype_of()); auto* parent = TRY(internal_get_prototype_of());
@ -772,33 +725,31 @@ ThrowCompletionOr<Value> Object::internal_get(PropertyKey const& property_key, V
return parent->internal_get(property_key, receiver); return parent->internal_get(property_key, receiver);
} }
// 4. If IsDataDescriptor(desc) is true, return desc.[[Value]]. // 3. If IsDataDescriptor(desc) is true, return desc.[[Value]].
if (descriptor->is_data_descriptor()) if (descriptor->is_data_descriptor())
return *descriptor->value; return *descriptor->value;
// 5. Assert: IsAccessorDescriptor(desc) is true. // 4. Assert: IsAccessorDescriptor(desc) is true.
VERIFY(descriptor->is_accessor_descriptor()); VERIFY(descriptor->is_accessor_descriptor());
// 6. Let getter be desc.[[Get]]. // 5. Let getter be desc.[[Get]].
auto* getter = *descriptor->get; auto* getter = *descriptor->get;
// 7. If getter is undefined, return undefined. // 6. If getter is undefined, return undefined.
if (!getter) if (!getter)
return js_undefined(); return js_undefined();
// 8. Return ? Call(getter, Receiver). // 7. Return ? Call(getter, Receiver).
return TRY(call(global_object(), *getter, receiver)); return TRY(call(global_object(), *getter, receiver));
} }
// 10.1.9 [[Set]] ( P, V, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-set-p-v-receiver // 10.1.9 [[Set]] ( P, V, Receiver ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-set-p-v-receiver
ThrowCompletionOr<bool> Object::internal_set(PropertyKey const& property_key, Value value, Value receiver) ThrowCompletionOr<bool> Object::internal_set(PropertyKey const& property_key, Value value, Value receiver)
{ {
VERIFY(property_key.is_valid());
VERIFY(!value.is_empty()); VERIFY(!value.is_empty());
VERIFY(!receiver.is_empty()); VERIFY(!receiver.is_empty());
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid());
// 2. Let ownDesc be ? O.[[GetOwnProperty]](P). // 2. Let ownDesc be ? O.[[GetOwnProperty]](P).
auto own_descriptor = TRY(internal_get_own_property(property_key)); auto own_descriptor = TRY(internal_get_own_property(property_key));
@ -809,10 +760,11 @@ ThrowCompletionOr<bool> Object::internal_set(PropertyKey const& property_key, Va
// 10.1.9.2 OrdinarySetWithOwnDescriptor ( O, P, V, Receiver, ownDesc ), https://tc39.es/ecma262/#sec-ordinarysetwithowndescriptor // 10.1.9.2 OrdinarySetWithOwnDescriptor ( O, P, V, Receiver, ownDesc ), https://tc39.es/ecma262/#sec-ordinarysetwithowndescriptor
ThrowCompletionOr<bool> Object::ordinary_set_with_own_descriptor(PropertyKey const& property_key, Value value, Value receiver, Optional<PropertyDescriptor> own_descriptor) ThrowCompletionOr<bool> Object::ordinary_set_with_own_descriptor(PropertyKey const& property_key, Value value, Value receiver, Optional<PropertyDescriptor> own_descriptor)
{ {
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
VERIFY(!value.is_empty());
VERIFY(!receiver.is_empty());
// 2. If ownDesc is undefined, then // 1. If ownDesc is undefined, then
if (!own_descriptor.has_value()) { if (!own_descriptor.has_value()) {
// a. Let parent be ? O.[[GetPrototypeOf]](). // a. Let parent be ? O.[[GetPrototypeOf]]().
auto* parent = TRY(internal_get_prototype_of()); auto* parent = TRY(internal_get_prototype_of());
@ -834,7 +786,7 @@ ThrowCompletionOr<bool> Object::ordinary_set_with_own_descriptor(PropertyKey con
} }
} }
// 3. If IsDataDescriptor(ownDesc) is true, then // 2. If IsDataDescriptor(ownDesc) is true, then
if (own_descriptor->is_data_descriptor()) { if (own_descriptor->is_data_descriptor()) {
// a. If ownDesc.[[Writable]] is false, return false. // a. If ownDesc.[[Writable]] is false, return false.
if (!*own_descriptor->writable) if (!*own_descriptor->writable)
@ -873,37 +825,36 @@ ThrowCompletionOr<bool> Object::ordinary_set_with_own_descriptor(PropertyKey con
} }
} }
// 4. Assert: IsAccessorDescriptor(ownDesc) is true. // 3. Assert: IsAccessorDescriptor(ownDesc) is true.
VERIFY(own_descriptor->is_accessor_descriptor()); VERIFY(own_descriptor->is_accessor_descriptor());
// 5. Let setter be ownDesc.[[Set]]. // 4. Let setter be ownDesc.[[Set]].
auto* setter = *own_descriptor->set; auto* setter = *own_descriptor->set;
// 6. If setter is undefined, return false. // 5. If setter is undefined, return false.
if (!setter) if (!setter)
return false; return false;
// 7. Perform ? Call(setter, Receiver, « V »). // 6. Perform ? Call(setter, Receiver, « V »).
(void)TRY(call(global_object(), *setter, receiver, value)); (void)TRY(call(global_object(), *setter, receiver, value));
// 8. Return true. // 7. Return true.
return true; return true;
} }
// 10.1.10 [[Delete]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-delete-p // 10.1.10 [[Delete]] ( P ), https://tc39.es/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots-delete-p
ThrowCompletionOr<bool> Object::internal_delete(PropertyKey const& property_key) ThrowCompletionOr<bool> Object::internal_delete(PropertyKey const& property_key)
{ {
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Let desc be ? O.[[GetOwnProperty]](P). // 1. Let desc be ? O.[[GetOwnProperty]](P).
auto descriptor = TRY(internal_get_own_property(property_key)); auto descriptor = TRY(internal_get_own_property(property_key));
// 3. If desc is undefined, return true. // 2. If desc is undefined, return true.
if (!descriptor.has_value()) if (!descriptor.has_value())
return true; return true;
// 4. If desc.[[Configurable]] is true, then // 3. If desc.[[Configurable]] is true, then
if (*descriptor->configurable) { if (*descriptor->configurable) {
// a. Remove the own property with name P from O. // a. Remove the own property with name P from O.
storage_delete(property_key); storage_delete(property_key);
@ -912,7 +863,7 @@ ThrowCompletionOr<bool> Object::internal_delete(PropertyKey const& property_key)
return true; return true;
} }
// 5. Return false. // 4. Return false.
return false; return false;
} }
@ -953,16 +904,14 @@ ThrowCompletionOr<MarkedVector<Value>> Object::internal_own_property_keys() cons
// 10.4.7.2 SetImmutablePrototype ( O, V ), https://tc39.es/ecma262/#sec-set-immutable-prototype // 10.4.7.2 SetImmutablePrototype ( O, V ), https://tc39.es/ecma262/#sec-set-immutable-prototype
ThrowCompletionOr<bool> Object::set_immutable_prototype(Object* prototype) ThrowCompletionOr<bool> Object::set_immutable_prototype(Object* prototype)
{ {
// 1. Assert: Either Type(V) is Object or Type(V) is Null. // 1. Let current be ? O.[[GetPrototypeOf]]().
// 2. Let current be ? O.[[GetPrototypeOf]]().
auto* current = TRY(internal_get_prototype_of()); auto* current = TRY(internal_get_prototype_of());
// 3. If SameValue(V, current) is true, return true. // 2. If SameValue(V, current) is true, return true.
if (prototype == current) if (prototype == current)
return true; return true;
// 4. Return false. // 3. Return false.
return false; return false;
} }
@ -1126,12 +1075,10 @@ ThrowCompletionOr<Object*> Object::define_properties(Value properties)
{ {
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: Type(O) is Object. // 1. Let props be ? ToObject(Properties).
// 2. Let props be ? ToObject(Properties).
auto* props = TRY(properties.to_object(global_object)); auto* props = TRY(properties.to_object(global_object));
// 3. Let keys be ? props.[[OwnPropertyKeys]](). // 2. Let keys be ? props.[[OwnPropertyKeys]]().
auto keys = TRY(props->internal_own_property_keys()); auto keys = TRY(props->internal_own_property_keys());
struct NameAndDescriptor { struct NameAndDescriptor {
@ -1139,10 +1086,10 @@ ThrowCompletionOr<Object*> Object::define_properties(Value properties)
PropertyDescriptor descriptor; PropertyDescriptor descriptor;
}; };
// 4. Let descriptors be a new empty List. // 3. Let descriptors be a new empty List.
Vector<NameAndDescriptor> descriptors; Vector<NameAndDescriptor> descriptors;
// 5. For each element nextKey of keys, do // 4. For each element nextKey of keys, do
for (auto& next_key : keys) { for (auto& next_key : keys) {
auto property_key = MUST(PropertyKey::from_value(global_object, next_key)); auto property_key = MUST(PropertyKey::from_value(global_object, next_key));
@ -1162,7 +1109,7 @@ ThrowCompletionOr<Object*> Object::define_properties(Value properties)
} }
} }
// 6. For each element pair of descriptors, do // 5. For each element pair of descriptors, do
for (auto& [name, descriptor] : descriptors) { for (auto& [name, descriptor] : descriptors) {
// a. Let P be the first element of pair. // a. Let P be the first element of pair.
// b. Let desc be the second element of pair. // b. Let desc be the second element of pair.
@ -1171,7 +1118,7 @@ ThrowCompletionOr<Object*> Object::define_properties(Value properties)
TRY(define_property_or_throw(name, descriptor)); TRY(define_property_or_throw(name, descriptor));
} }
// 7. Return O. // 6. Return O.
return this; return this;
} }

View file

@ -1,6 +1,6 @@
/* /*
* Copyright (c) 2020, Matthew Olsson <mattco@serenityos.org> * Copyright (c) 2020, Matthew Olsson <mattco@serenityos.org>
* Copyright (c) 2021, Linus Groh <linusg@serenityos.org> * Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
* *
* SPDX-License-Identifier: BSD-2-Clause * SPDX-License-Identifier: BSD-2-Clause
*/ */
@ -95,47 +95,46 @@ ThrowCompletionOr<bool> ProxyObject::internal_set_prototype_of(Object* prototype
auto& vm = this->vm(); auto& vm = this->vm();
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: Either Type(V) is Object or Type(V) is Null. // 1. Let handler be O.[[ProxyHandler]].
// 2. Let handler be O.[[ProxyHandler]].
// 3. If handler is null, throw a TypeError exception. // 2. If handler is null, throw a TypeError exception.
if (m_is_revoked) if (m_is_revoked)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked);
// 4. Assert: Type(handler) is Object. // 3. Assert: Type(handler) is Object.
// 5. Let target be O.[[ProxyTarget]]. // 4. Let target be O.[[ProxyTarget]].
// 6. Let trap be ? GetMethod(handler, "setPrototypeOf"). // 5. Let trap be ? GetMethod(handler, "setPrototypeOf").
auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.setPrototypeOf)); auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.setPrototypeOf));
// 7. If trap is undefined, then // 6. If trap is undefined, then
if (!trap) { if (!trap) {
// a. Return ? target.[[SetPrototypeOf]](V). // a. Return ? target.[[SetPrototypeOf]](V).
return m_target.internal_set_prototype_of(prototype); return m_target.internal_set_prototype_of(prototype);
} }
// 8. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, V »)). // 7. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, V »)).
auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, prototype)).to_boolean(); auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, prototype)).to_boolean();
// 9. If booleanTrapResult is false, return false. // 8. If booleanTrapResult is false, return false.
if (!trap_result) if (!trap_result)
return false; return false;
// 10. Let extensibleTarget be ? IsExtensible(target). // 9. Let extensibleTarget be ? IsExtensible(target).
auto extensible_target = TRY(m_target.is_extensible()); auto extensible_target = TRY(m_target.is_extensible());
// 11. If extensibleTarget is true, return true. // 10. If extensibleTarget is true, return true.
if (extensible_target) if (extensible_target)
return true; return true;
// 12. Let targetProto be ? target.[[GetPrototypeOf]](). // 11. Let targetProto be ? target.[[GetPrototypeOf]]().
auto* target_proto = TRY(m_target.internal_get_prototype_of()); auto* target_proto = TRY(m_target.internal_get_prototype_of());
// 13. If SameValue(V, targetProto) is false, throw a TypeError exception. // 12. If SameValue(V, targetProto) is false, throw a TypeError exception.
if (!same_value(prototype, target_proto)) if (!same_value(prototype, target_proto))
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxySetPrototypeOfNonExtensible); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxySetPrototypeOfNonExtensible);
// 14. Return true. // 13. Return true.
return true; return true;
} }
@ -224,38 +223,37 @@ ThrowCompletionOr<Optional<PropertyDescriptor>> ProxyObject::internal_get_own_pr
auto& vm = this->vm(); auto& vm = this->vm();
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Let handler be O.[[ProxyHandler]]. // 1. Let handler be O.[[ProxyHandler]].
// 3. If handler is null, throw a TypeError exception. // 2. If handler is null, throw a TypeError exception.
if (m_is_revoked) if (m_is_revoked)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked);
// 4. Assert: Type(handler) is Object. // 3. Assert: Type(handler) is Object.
// 5. Let target be O.[[ProxyTarget]]. // 4. Let target be O.[[ProxyTarget]].
// 6. Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor"). // 5. Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor").
auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.getOwnPropertyDescriptor)); auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.getOwnPropertyDescriptor));
// 7. If trap is undefined, then // 6. If trap is undefined, then
if (!trap) { if (!trap) {
// a. Return ? target.[[GetOwnProperty]](P). // a. Return ? target.[[GetOwnProperty]](P).
return m_target.internal_get_own_property(property_key); return m_target.internal_get_own_property(property_key);
} }
// 8. Let trapResultObj be ? Call(trap, handler, « target, P »). // 7. Let trapResultObj be ? Call(trap, handler, « target, P »).
auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key))); auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key)));
// 9. If Type(trapResultObj) is neither Object nor Undefined, throw a TypeError exception. // 8. If Type(trapResultObj) is neither Object nor Undefined, throw a TypeError exception.
if (!trap_result.is_object() && !trap_result.is_undefined()) if (!trap_result.is_object() && !trap_result.is_undefined())
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyGetOwnDescriptorReturn); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyGetOwnDescriptorReturn);
// 10. Let targetDesc be ? target.[[GetOwnProperty]](P). // 9. Let targetDesc be ? target.[[GetOwnProperty]](P).
auto target_descriptor = TRY(m_target.internal_get_own_property(property_key)); auto target_descriptor = TRY(m_target.internal_get_own_property(property_key));
// 11. If trapResultObj is undefined, then // 10. If trapResultObj is undefined, then
if (trap_result.is_undefined()) { if (trap_result.is_undefined()) {
// a. If targetDesc is undefined, return undefined. // a. If targetDesc is undefined, return undefined.
if (!target_descriptor.has_value()) if (!target_descriptor.has_value())
@ -276,23 +274,23 @@ ThrowCompletionOr<Optional<PropertyDescriptor>> ProxyObject::internal_get_own_pr
return Optional<PropertyDescriptor> {}; return Optional<PropertyDescriptor> {};
} }
// 12. Let extensibleTarget be ? IsExtensible(target). // 11. Let extensibleTarget be ? IsExtensible(target).
auto extensible_target = TRY(m_target.is_extensible()); auto extensible_target = TRY(m_target.is_extensible());
// 13. Let resultDesc be ? ToPropertyDescriptor(trapResultObj). // 12. Let resultDesc be ? ToPropertyDescriptor(trapResultObj).
auto result_desc = TRY(to_property_descriptor(global_object, trap_result)); auto result_desc = TRY(to_property_descriptor(global_object, trap_result));
// 14. Call CompletePropertyDescriptor(resultDesc). // 13. Call CompletePropertyDescriptor(resultDesc).
result_desc.complete(); result_desc.complete();
// 15. Let valid be IsCompatiblePropertyDescriptor(extensibleTarget, resultDesc, targetDesc). // 14. Let valid be IsCompatiblePropertyDescriptor(extensibleTarget, resultDesc, targetDesc).
auto valid = is_compatible_property_descriptor(extensible_target, result_desc, target_descriptor); auto valid = is_compatible_property_descriptor(extensible_target, result_desc, target_descriptor);
// 16. If valid is false, throw a TypeError exception. // 15. If valid is false, throw a TypeError exception.
if (!valid) if (!valid)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyGetOwnDescriptorInvalidDescriptor); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyGetOwnDescriptorInvalidDescriptor);
// 17. If resultDesc.[[Configurable]] is false, then // 16. If resultDesc.[[Configurable]] is false, then
if (!*result_desc.configurable) { if (!*result_desc.configurable) {
// a. If targetDesc is undefined or targetDesc.[[Configurable]] is true, then // a. If targetDesc is undefined or targetDesc.[[Configurable]] is true, then
if (!target_descriptor.has_value() || *target_descriptor->configurable) if (!target_descriptor.has_value() || *target_descriptor->configurable)
@ -307,7 +305,7 @@ ThrowCompletionOr<Optional<PropertyDescriptor>> ProxyObject::internal_get_own_pr
} }
} }
// 18. Return resultDesc. // 17. Return resultDesc.
return result_desc; return result_desc;
} }
@ -317,44 +315,43 @@ ThrowCompletionOr<bool> ProxyObject::internal_define_own_property(PropertyKey co
auto& vm = this->vm(); auto& vm = this->vm();
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Let handler be O.[[ProxyHandler]]. // 1. Let handler be O.[[ProxyHandler]].
// 3. If handler is null, throw a TypeError exception. // 2. If handler is null, throw a TypeError exception.
if (m_is_revoked) if (m_is_revoked)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked);
// 4. Assert: Type(handler) is Object. // 3. Assert: Type(handler) is Object.
// 5. Let target be O.[[ProxyTarget]]. // 4. Let target be O.[[ProxyTarget]].
// 6. Let trap be ? GetMethod(handler, "defineProperty"). // 5. Let trap be ? GetMethod(handler, "defineProperty").
auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.defineProperty)); auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.defineProperty));
// 7. If trap is undefined, then // 6. If trap is undefined, then
if (!trap) { if (!trap) {
// a. Return ? target.[[DefineOwnProperty]](P, Desc). // a. Return ? target.[[DefineOwnProperty]](P, Desc).
return m_target.internal_define_own_property(property_key, property_descriptor); return m_target.internal_define_own_property(property_key, property_descriptor);
} }
// 8. Let descObj be FromPropertyDescriptor(Desc). // 7. Let descObj be FromPropertyDescriptor(Desc).
auto descriptor_object = from_property_descriptor(global_object, property_descriptor); auto descriptor_object = from_property_descriptor(global_object, property_descriptor);
// 9. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P, descObj »)). // 8. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P, descObj »)).
auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key), descriptor_object)).to_boolean(); auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key), descriptor_object)).to_boolean();
// 10. If booleanTrapResult is false, return false. // 9. If booleanTrapResult is false, return false.
if (!trap_result) if (!trap_result)
return false; return false;
// 11. Let targetDesc be ? target.[[GetOwnProperty]](P). // 10. Let targetDesc be ? target.[[GetOwnProperty]](P).
auto target_descriptor = TRY(m_target.internal_get_own_property(property_key)); auto target_descriptor = TRY(m_target.internal_get_own_property(property_key));
// 12. Let extensibleTarget be ? IsExtensible(target). // 11. Let extensibleTarget be ? IsExtensible(target).
auto extensible_target = TRY(m_target.is_extensible()); auto extensible_target = TRY(m_target.is_extensible());
// 14. Else, let settingConfigFalse be false. // 12. Else, let settingConfigFalse be false.
bool setting_config_false = false; bool setting_config_false = false;
// 13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then // 13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then
@ -363,7 +360,7 @@ ThrowCompletionOr<bool> ProxyObject::internal_define_own_property(PropertyKey co
setting_config_false = true; setting_config_false = true;
} }
// 15. If targetDesc is undefined, then // 14. If targetDesc is undefined, then
if (!target_descriptor.has_value()) { if (!target_descriptor.has_value()) {
// a. If extensibleTarget is false, throw a TypeError exception. // a. If extensibleTarget is false, throw a TypeError exception.
if (!extensible_target) if (!extensible_target)
@ -373,7 +370,7 @@ ThrowCompletionOr<bool> ProxyObject::internal_define_own_property(PropertyKey co
if (setting_config_false) if (setting_config_false)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyDefinePropNonConfigurableNonExisting); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyDefinePropNonConfigurableNonExisting);
} }
// 16. Else, // 15. Else,
else { else {
// a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc, targetDesc) is false, throw a TypeError exception. // a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc, targetDesc) is false, throw a TypeError exception.
if (!is_compatible_property_descriptor(extensible_target, property_descriptor, target_descriptor)) if (!is_compatible_property_descriptor(extensible_target, property_descriptor, target_descriptor))
@ -391,7 +388,7 @@ ThrowCompletionOr<bool> ProxyObject::internal_define_own_property(PropertyKey co
} }
} }
// 17. Return true. // 16. Return true.
return true; return true;
} }
@ -401,31 +398,30 @@ ThrowCompletionOr<bool> ProxyObject::internal_has_property(PropertyKey const& pr
auto& vm = this->vm(); auto& vm = this->vm();
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Let handler be O.[[ProxyHandler]]. // 1. Let handler be O.[[ProxyHandler]].
// 3. If handler is null, throw a TypeError exception. // 2. If handler is null, throw a TypeError exception.
if (m_is_revoked) if (m_is_revoked)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked);
// 4. Assert: Type(handler) is Object. // 3. Assert: Type(handler) is Object.
// 5. Let target be O.[[ProxyTarget]]. // 4. Let target be O.[[ProxyTarget]].
// 6. Let trap be ? GetMethod(handler, "has"). // 5. Let trap be ? GetMethod(handler, "has").
auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.has)); auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.has));
// 7. If trap is undefined, then // 6. If trap is undefined, then
if (!trap) { if (!trap) {
// a. Return ? target.[[HasProperty]](P). // a. Return ? target.[[HasProperty]](P).
return m_target.internal_has_property(property_key); return m_target.internal_has_property(property_key);
} }
// 8. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P »)). // 7. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P »)).
auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key))).to_boolean(); auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key))).to_boolean();
// 9. If booleanTrapResult is false, then // 8. If booleanTrapResult is false, then
if (!trap_result) { if (!trap_result) {
// a. Let targetDesc be ? target.[[GetOwnProperty]](P). // a. Let targetDesc be ? target.[[GetOwnProperty]](P).
auto target_descriptor = TRY(m_target.internal_get_own_property(property_key)); auto target_descriptor = TRY(m_target.internal_get_own_property(property_key));
@ -445,7 +441,7 @@ ThrowCompletionOr<bool> ProxyObject::internal_has_property(PropertyKey const& pr
} }
} }
// 10. Return booleanTrapResult. // 9. Return booleanTrapResult.
return trap_result; return trap_result;
} }
@ -457,17 +453,17 @@ ThrowCompletionOr<Value> ProxyObject::internal_get(PropertyKey const& property_k
auto& vm = this->vm(); auto& vm = this->vm();
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
VERIFY(!receiver.is_empty());
// 2. Let handler be O.[[ProxyHandler]]. // 1. Let handler be O.[[ProxyHandler]].
// 3. If handler is null, throw a TypeError exception. // 2. If handler is null, throw a TypeError exception.
if (m_is_revoked) if (m_is_revoked)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked);
// 4. Assert: Type(handler) is Object. // 3. Assert: Type(handler) is Object.
// 5. Let target be O.[[ProxyTarget]]. // 4. Let target be O.[[ProxyTarget]].
// NOTE: We need to protect ourselves from a Proxy with the handler's prototype set to the // NOTE: We need to protect ourselves from a Proxy with the handler's prototype set to the
// Proxy itself, which would by default bounce between these functions indefinitely and lead to // Proxy itself, which would by default bounce between these functions indefinitely and lead to
@ -485,22 +481,22 @@ ThrowCompletionOr<Value> ProxyObject::internal_get(PropertyKey const& property_k
if (vm.did_reach_stack_space_limit()) if (vm.did_reach_stack_space_limit())
return vm.throw_completion<InternalError>(global_object, ErrorType::CallStackSizeExceeded); return vm.throw_completion<InternalError>(global_object, ErrorType::CallStackSizeExceeded);
// 6. Let trap be ? GetMethod(handler, "get"). // 5. Let trap be ? GetMethod(handler, "get").
auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.get)); auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.get));
// 7. If trap is undefined, then // 6. If trap is undefined, then
if (!trap) { if (!trap) {
// a. Return ? target.[[Get]](P, Receiver). // a. Return ? target.[[Get]](P, Receiver).
return m_target.internal_get(property_key, receiver); return m_target.internal_get(property_key, receiver);
} }
// 8. Let trapResult be ? Call(trap, handler, « target, P, Receiver »). // 7. Let trapResult be ? Call(trap, handler, « target, P, Receiver »).
auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key), receiver)); auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key), receiver));
// 9. Let targetDesc be ? target.[[GetOwnProperty]](P). // 8. Let targetDesc be ? target.[[GetOwnProperty]](P).
auto target_descriptor = TRY(m_target.internal_get_own_property(property_key)); auto target_descriptor = TRY(m_target.internal_get_own_property(property_key));
// 10. If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then // 9. If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then
if (target_descriptor.has_value() && !*target_descriptor->configurable) { if (target_descriptor.has_value() && !*target_descriptor->configurable) {
// a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then // a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then
if (target_descriptor->is_data_descriptor() && !*target_descriptor->writable) { if (target_descriptor->is_data_descriptor() && !*target_descriptor->writable) {
@ -516,51 +512,49 @@ ThrowCompletionOr<Value> ProxyObject::internal_get(PropertyKey const& property_k
} }
} }
// 11. Return trapResult. // 10. Return trapResult.
return trap_result; return trap_result;
} }
// 10.5.9 [[Set]] ( P, V, Receiver ), https://tc39.es/ecma262/#sec-proxy-object-internal-methods-and-internal-slots-set-p-v-receiver // 10.5.9 [[Set]] ( P, V, Receiver ), https://tc39.es/ecma262/#sec-proxy-object-internal-methods-and-internal-slots-set-p-v-receiver
ThrowCompletionOr<bool> ProxyObject::internal_set(PropertyKey const& property_key, Value value, Value receiver) ThrowCompletionOr<bool> ProxyObject::internal_set(PropertyKey const& property_key, Value value, Value receiver)
{ {
VERIFY(!value.is_empty());
VERIFY(!receiver.is_empty());
auto& vm = this->vm(); auto& vm = this->vm();
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
VERIFY(!value.is_empty());
VERIFY(!receiver.is_empty());
// 2. Let handler be O.[[ProxyHandler]]. // 1. Let handler be O.[[ProxyHandler]].
// 3. If handler is null, throw a TypeError exception. // 2. If handler is null, throw a TypeError exception.
if (m_is_revoked) if (m_is_revoked)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked);
// 4. Assert: Type(handler) is Object. // 3. Assert: Type(handler) is Object.
// 5. Let target be O.[[ProxyTarget]]. // 4. Let target be O.[[ProxyTarget]].
// 6. Let trap be ? GetMethod(handler, "set"). // 5. Let trap be ? GetMethod(handler, "set").
auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.set)); auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.set));
// 7. If trap is undefined, then // 6. If trap is undefined, then
if (!trap) { if (!trap) {
// a. Return ? target.[[Set]](P, V, Receiver). // a. Return ? target.[[Set]](P, V, Receiver).
return m_target.internal_set(property_key, value, receiver); return m_target.internal_set(property_key, value, receiver);
} }
// 8. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P, V, Receiver »)). // 7. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P, V, Receiver »)).
auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key), value, receiver)).to_boolean(); auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key), value, receiver)).to_boolean();
// 9. If booleanTrapResult is false, return false. // 8. If booleanTrapResult is false, return false.
if (!trap_result) if (!trap_result)
return false; return false;
// 10. Let targetDesc be ? target.[[GetOwnProperty]](P). // 9. Let targetDesc be ? target.[[GetOwnProperty]](P).
auto target_descriptor = TRY(m_target.internal_get_own_property(property_key)); auto target_descriptor = TRY(m_target.internal_get_own_property(property_key));
// 11. If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then // 10. If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then
if (target_descriptor.has_value() && !*target_descriptor->configurable) { if (target_descriptor.has_value() && !*target_descriptor->configurable) {
// a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then // a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then
if (target_descriptor->is_data_descriptor() && !*target_descriptor->writable) { if (target_descriptor->is_data_descriptor() && !*target_descriptor->writable) {
@ -576,7 +570,7 @@ ThrowCompletionOr<bool> ProxyObject::internal_set(PropertyKey const& property_ke
} }
} }
// 12. Return true. // 11. Return true.
return true; return true;
} }
@ -586,53 +580,52 @@ ThrowCompletionOr<bool> ProxyObject::internal_delete(PropertyKey const& property
auto& vm = this->vm(); auto& vm = this->vm();
auto& global_object = this->global_object(); auto& global_object = this->global_object();
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Let handler be O.[[ProxyHandler]]. // 1. Let handler be O.[[ProxyHandler]].
// 3. If handler is null, throw a TypeError exception. // 2. If handler is null, throw a TypeError exception.
if (m_is_revoked) if (m_is_revoked)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyRevoked);
// 4. Assert: Type(handler) is Object. // 3. Assert: Type(handler) is Object.
// 5. Let target be O.[[ProxyTarget]]. // 4. Let target be O.[[ProxyTarget]].
// 6. Let trap be ? GetMethod(handler, "deleteProperty"). // 5. Let trap be ? GetMethod(handler, "deleteProperty").
auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.deleteProperty)); auto trap = TRY(Value(&m_handler).get_method(global_object, vm.names.deleteProperty));
// 7. If trap is undefined, then // 6. If trap is undefined, then
if (!trap) { if (!trap) {
// a. Return ? target.[[Delete]](P). // a. Return ? target.[[Delete]](P).
return m_target.internal_delete(property_key); return m_target.internal_delete(property_key);
} }
// 8. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P »)). // 7. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P »)).
auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key))).to_boolean(); auto trap_result = TRY(call(global_object, *trap, &m_handler, &m_target, property_key_to_value(vm, property_key))).to_boolean();
// 9. If booleanTrapResult is false, return false. // 8. If booleanTrapResult is false, return false.
if (!trap_result) if (!trap_result)
return false; return false;
// 10. Let targetDesc be ? target.[[GetOwnProperty]](P). // 9. Let targetDesc be ? target.[[GetOwnProperty]](P).
auto target_descriptor = TRY(m_target.internal_get_own_property(property_key)); auto target_descriptor = TRY(m_target.internal_get_own_property(property_key));
// 11. If targetDesc is undefined, return true. // 10. If targetDesc is undefined, return true.
if (!target_descriptor.has_value()) if (!target_descriptor.has_value())
return true; return true;
// 12. If targetDesc.[[Configurable]] is false, throw a TypeError exception. // 11. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
if (!*target_descriptor->configurable) if (!*target_descriptor->configurable)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyDeleteNonConfigurable); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyDeleteNonConfigurable);
// 13. Let extensibleTarget be ? IsExtensible(target). // 12. Let extensibleTarget be ? IsExtensible(target).
auto extensible_target = TRY(m_target.is_extensible()); auto extensible_target = TRY(m_target.is_extensible());
// 14. If extensibleTarget is false, throw a TypeError exception. // 13. If extensibleTarget is false, throw a TypeError exception.
if (!extensible_target) if (!extensible_target)
return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyDeleteNonExtensible); return vm.throw_completion<TypeError>(global_object, ErrorType::ProxyDeleteNonExtensible);
// 15. Return true. // 14. Return true.
return true; return true;
} }
@ -684,7 +677,7 @@ ThrowCompletionOr<MarkedVector<Value>> ProxyObject::internal_own_property_keys()
// 11. Let targetKeys be ? target.[[OwnPropertyKeys]](). // 11. Let targetKeys be ? target.[[OwnPropertyKeys]]().
auto target_keys = TRY(m_target.internal_own_property_keys()); auto target_keys = TRY(m_target.internal_own_property_keys());
// 12. Assert: targetKeys is a List whose elements are only String and Symbol values. // 12. Assert: targetKeys is a List of property keys.
// 13. Assert: targetKeys contains no duplicate entries. // 13. Assert: targetKeys contains no duplicate entries.
// 14. Let targetConfigurableKeys be a new empty List. // 14. Let targetConfigurableKeys be a new empty List.

View file

@ -1,6 +1,6 @@
/* /*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org> * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Linus Groh <linusg@serenityos.org> * Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
* *
* SPDX-License-Identifier: BSD-2-Clause * SPDX-License-Identifier: BSD-2-Clause
*/ */
@ -42,40 +42,38 @@ void StringObject::visit_edges(Cell::Visitor& visitor)
// 10.4.3.5 StringGetOwnProperty ( S, P ), https://tc39.es/ecma262/#sec-stringgetownproperty // 10.4.3.5 StringGetOwnProperty ( S, P ), https://tc39.es/ecma262/#sec-stringgetownproperty
static Optional<PropertyDescriptor> string_get_own_property(StringObject const& string, PropertyKey const& property_key) static Optional<PropertyDescriptor> string_get_own_property(StringObject const& string, PropertyKey const& property_key)
{ {
// 1. Assert: S is an Object that has a [[StringData]] internal slot.
// 2. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 3. If Type(P) is not String, return undefined. // 1. If Type(P) is not String, return undefined.
// NOTE: The spec only uses string and symbol keys, and later coerces to numbers - // NOTE: The spec only uses string and symbol keys, and later coerces to numbers -
// this is not the case for PropertyKey, so '!property_key.is_string()' would be wrong. // this is not the case for PropertyKey, so '!property_key.is_string()' would be wrong.
if (property_key.is_symbol()) if (property_key.is_symbol())
return {}; return {};
// 4. Let index be ! CanonicalNumericIndexString(P). // 2. Let index be ! CanonicalNumericIndexString(P).
auto index = canonical_numeric_index_string(property_key, CanonicalIndexMode::IgnoreNumericRoundtrip); auto index = canonical_numeric_index_string(property_key, CanonicalIndexMode::IgnoreNumericRoundtrip);
// 5. If index is undefined, return undefined. // 3. If index is undefined, return undefined.
// 6. If IsIntegralNumber(index) is false, return undefined. // 4. If IsIntegralNumber(index) is false, return undefined.
// 7. If index is -0𝔽, return undefined. // 5. If index is -0𝔽, return undefined.
if (!index.is_index()) if (!index.is_index())
return {}; return {};
// 8. Let str be S.[[StringData]]. // 6. Let str be S.[[StringData]].
// 9. Assert: Type(str) is String. // 7. Assert: Type(str) is String.
auto str = string.primitive_string().utf16_string_view(); auto str = string.primitive_string().utf16_string_view();
// 10. Let len be the length of str. // 8. Let len be the length of str.
auto length = str.length_in_code_units(); auto length = str.length_in_code_units();
// 11. If (index) < 0 or len ≤ (index), return undefined. // 9. If (index) < 0 or len ≤ (index), return undefined.
if (length <= index.as_index()) if (length <= index.as_index())
return {}; return {};
// 12. Let resultStr be the String value of length 1, containing one code unit from str, specifically the code unit at index (index). // 10. Let resultStr be the String value of length 1, containing one code unit from str, specifically the code unit at index (index).
auto result_str = js_string(string.vm(), str.substring_view(index.as_index(), 1)); auto result_str = js_string(string.vm(), str.substring_view(index.as_index(), 1));
// 13. Return the PropertyDescriptor { [[Value]]: resultStr, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: false }. // 11. Return the PropertyDescriptor { [[Value]]: resultStr, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: false }.
return PropertyDescriptor { return PropertyDescriptor {
.value = result_str, .value = result_str,
.writable = false, .writable = false,
@ -87,29 +85,28 @@ static Optional<PropertyDescriptor> string_get_own_property(StringObject const&
// 10.4.3.1 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-string-exotic-objects-getownproperty-p // 10.4.3.1 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-string-exotic-objects-getownproperty-p
ThrowCompletionOr<Optional<PropertyDescriptor>> StringObject::internal_get_own_property(PropertyKey const& property_key) const ThrowCompletionOr<Optional<PropertyDescriptor>> StringObject::internal_get_own_property(PropertyKey const& property_key) const
{ {
// Assert: IsPropertyKey(P) is true. VERIFY(property_key.is_valid());
// 2. Let desc be OrdinaryGetOwnProperty(S, P). // 1. Let desc be OrdinaryGetOwnProperty(S, P).
auto descriptor = MUST(Object::internal_get_own_property(property_key)); auto descriptor = MUST(Object::internal_get_own_property(property_key));
// 3. If desc is not undefined, return desc. // 2. If desc is not undefined, return desc.
if (descriptor.has_value()) if (descriptor.has_value())
return descriptor; return descriptor;
// 4. Return ! StringGetOwnProperty(S, P). // 3. Return ! StringGetOwnProperty(S, P).
return string_get_own_property(*this, property_key); return string_get_own_property(*this, property_key);
} }
// 10.4.3.2 [[DefineOwnProperty]] ( P, Desc ), https://tc39.es/ecma262/#sec-string-exotic-objects-defineownproperty-p-desc // 10.4.3.2 [[DefineOwnProperty]] ( P, Desc ), https://tc39.es/ecma262/#sec-string-exotic-objects-defineownproperty-p-desc
ThrowCompletionOr<bool> StringObject::internal_define_own_property(PropertyKey const& property_key, PropertyDescriptor const& property_descriptor) ThrowCompletionOr<bool> StringObject::internal_define_own_property(PropertyKey const& property_key, PropertyDescriptor const& property_descriptor)
{ {
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Let stringDesc be ! StringGetOwnProperty(S, P). // 1. Let stringDesc be ! StringGetOwnProperty(S, P).
auto string_descriptor = string_get_own_property(*this, property_key); auto string_descriptor = string_get_own_property(*this, property_key);
// 3. If stringDesc is not undefined, then // 2. If stringDesc is not undefined, then
if (string_descriptor.has_value()) { if (string_descriptor.has_value()) {
// a. Let extensible be S.[[Extensible]]. // a. Let extensible be S.[[Extensible]].
auto extensible = m_is_extensible; auto extensible = m_is_extensible;
@ -118,7 +115,7 @@ ThrowCompletionOr<bool> StringObject::internal_define_own_property(PropertyKey c
return is_compatible_property_descriptor(extensible, property_descriptor, string_descriptor); return is_compatible_property_descriptor(extensible, property_descriptor, string_descriptor);
} }
// 4. Return ! OrdinaryDefineOwnProperty(S, P, Desc). // 3. Return ! OrdinaryDefineOwnProperty(S, P, Desc).
return Object::internal_define_own_property(property_key, property_descriptor); return Object::internal_define_own_property(property_key, property_descriptor);
} }

View file

@ -1,6 +1,6 @@
/* /*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org> * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Linus Groh <linusg@serenityos.org> * Copyright (c) 2021-2022, Linus Groh <linusg@serenityos.org>
* *
* SPDX-License-Identifier: BSD-2-Clause * SPDX-License-Identifier: BSD-2-Clause
*/ */
@ -176,16 +176,13 @@ public:
// 10.4.5.1 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-integer-indexed-exotic-objects-getownproperty-p // 10.4.5.1 [[GetOwnProperty]] ( P ), https://tc39.es/ecma262/#sec-integer-indexed-exotic-objects-getownproperty-p
virtual ThrowCompletionOr<Optional<PropertyDescriptor>> internal_get_own_property(PropertyKey const& property_key) const override virtual ThrowCompletionOr<Optional<PropertyDescriptor>> internal_get_own_property(PropertyKey const& property_key) const override
{ {
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Assert: O is an Integer-Indexed exotic object.
// NOTE: If the property name is a number type (An implementation-defined optimized // NOTE: If the property name is a number type (An implementation-defined optimized
// property key type), it can be treated as a string property that will transparently be // property key type), it can be treated as a string property that will transparently be
// converted into a canonical numeric index. // converted into a canonical numeric index.
// 3. If Type(P) is String, then // 1. If Type(P) is String, then
// NOTE: This includes an implementation-defined optimization, see note above! // NOTE: This includes an implementation-defined optimization, see note above!
if (property_key.is_string() || property_key.is_number()) { if (property_key.is_string() || property_key.is_number()) {
// a. Let numericIndex be ! CanonicalNumericIndexString(P). // a. Let numericIndex be ! CanonicalNumericIndexString(P).
@ -209,23 +206,20 @@ public:
} }
} }
// 4. Return OrdinaryGetOwnProperty(O, P). // 2. Return OrdinaryGetOwnProperty(O, P).
return Object::internal_get_own_property(property_key); return Object::internal_get_own_property(property_key);
} }
// 10.4.5.2 [[HasProperty]] ( P ), https://tc39.es/ecma262/#sec-integer-indexed-exotic-objects-hasproperty-p // 10.4.5.2 [[HasProperty]] ( P ), https://tc39.es/ecma262/#sec-integer-indexed-exotic-objects-hasproperty-p
virtual ThrowCompletionOr<bool> internal_has_property(PropertyKey const& property_key) const override virtual ThrowCompletionOr<bool> internal_has_property(PropertyKey const& property_key) const override
{ {
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Assert: O is an Integer-Indexed exotic object.
// NOTE: If the property name is a number type (An implementation-defined optimized // NOTE: If the property name is a number type (An implementation-defined optimized
// property key type), it can be treated as a string property that will transparently be // property key type), it can be treated as a string property that will transparently be
// converted into a canonical numeric index. // converted into a canonical numeric index.
// 3. If Type(P) is String, then // 1. If Type(P) is String, then
// NOTE: This includes an implementation-defined optimization, see note above! // NOTE: This includes an implementation-defined optimization, see note above!
if (property_key.is_string() || property_key.is_number()) { if (property_key.is_string() || property_key.is_number()) {
// a. Let numericIndex be ! CanonicalNumericIndexString(P). // a. Let numericIndex be ! CanonicalNumericIndexString(P).
@ -235,23 +229,20 @@ public:
return is_valid_integer_index(*this, numeric_index); return is_valid_integer_index(*this, numeric_index);
} }
// 4. Return ? OrdinaryHasProperty(O, P). // 2. Return ? OrdinaryHasProperty(O, P).
return Object::internal_has_property(property_key); return Object::internal_has_property(property_key);
} }
// 10.4.5.3 [[DefineOwnProperty]] ( P, Desc ), https://tc39.es/ecma262/#sec-integer-indexed-exotic-objects-defineownproperty-p-desc // 10.4.5.3 [[DefineOwnProperty]] ( P, Desc ), https://tc39.es/ecma262/#sec-integer-indexed-exotic-objects-defineownproperty-p-desc
virtual ThrowCompletionOr<bool> internal_define_own_property(PropertyKey const& property_key, PropertyDescriptor const& property_descriptor) override virtual ThrowCompletionOr<bool> internal_define_own_property(PropertyKey const& property_key, PropertyDescriptor const& property_descriptor) override
{ {
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Assert: O is an Integer-Indexed exotic object.
// NOTE: If the property name is a number type (An implementation-defined optimized // NOTE: If the property name is a number type (An implementation-defined optimized
// property key type), it can be treated as a string property that will transparently be // property key type), it can be treated as a string property that will transparently be
// converted into a canonical numeric index. // converted into a canonical numeric index.
// 3. If Type(P) is String, then // 1. If Type(P) is String, then
// NOTE: This includes an implementation-defined optimization, see note above! // NOTE: This includes an implementation-defined optimization, see note above!
if (property_key.is_string() || property_key.is_number()) { if (property_key.is_string() || property_key.is_number()) {
// a. Let numericIndex be ! CanonicalNumericIndexString(P). // a. Let numericIndex be ! CanonicalNumericIndexString(P).
@ -287,7 +278,7 @@ public:
} }
} }
// 4. Return ! OrdinaryDefineOwnProperty(O, P, Desc). // 2. Return ! OrdinaryDefineOwnProperty(O, P, Desc).
return Object::internal_define_own_property(property_key, property_descriptor); return Object::internal_define_own_property(property_key, property_descriptor);
} }
@ -296,13 +287,12 @@ public:
{ {
VERIFY(!receiver.is_empty()); VERIFY(!receiver.is_empty());
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// NOTE: If the property name is a number type (An implementation-defined optimized // NOTE: If the property name is a number type (An implementation-defined optimized
// property key type), it can be treated as a string property that will transparently be // property key type), it can be treated as a string property that will transparently be
// converted into a canonical numeric index. // converted into a canonical numeric index.
// 2. If Type(P) is String, then // 1. If Type(P) is String, then
// NOTE: This includes an implementation-defined optimization, see note above! // NOTE: This includes an implementation-defined optimization, see note above!
if (property_key.is_string() || property_key.is_number()) { if (property_key.is_string() || property_key.is_number()) {
// a. Let numericIndex be ! CanonicalNumericIndexString(P). // a. Let numericIndex be ! CanonicalNumericIndexString(P).
@ -314,7 +304,7 @@ public:
} }
} }
// 3. Return ? OrdinaryGet(O, P, Receiver). // 2. Return ? OrdinaryGet(O, P, Receiver).
return Object::internal_get(property_key, receiver); return Object::internal_get(property_key, receiver);
} }
@ -324,13 +314,12 @@ public:
VERIFY(!value.is_empty()); VERIFY(!value.is_empty());
VERIFY(!receiver.is_empty()); VERIFY(!receiver.is_empty());
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// NOTE: If the property name is a number type (An implementation-defined optimized // NOTE: If the property name is a number type (An implementation-defined optimized
// property key type), it can be treated as a string property that will transparently be // property key type), it can be treated as a string property that will transparently be
// converted into a canonical numeric index. // converted into a canonical numeric index.
// 2. If Type(P) is String, then // 1. If Type(P) is String, then
// NOTE: This includes an implementation-defined optimization, see note above! // NOTE: This includes an implementation-defined optimization, see note above!
if (property_key.is_string() || property_key.is_number()) { if (property_key.is_string() || property_key.is_number()) {
// a. Let numericIndex be ! CanonicalNumericIndexString(P). // a. Let numericIndex be ! CanonicalNumericIndexString(P).
@ -345,22 +334,20 @@ public:
} }
} }
// 3. Return ? OrdinarySet(O, P, V, Receiver). // 2. Return ? OrdinarySet(O, P, V, Receiver).
return Object::internal_set(property_key, value, receiver); return Object::internal_set(property_key, value, receiver);
} }
// 10.4.5.6 [[Delete]] ( P ), https://tc39.es/ecma262/#sec-integer-indexed-exotic-objects-delete-p // 10.4.5.6 [[Delete]] ( P ), https://tc39.es/ecma262/#sec-integer-indexed-exotic-objects-delete-p
virtual ThrowCompletionOr<bool> internal_delete(PropertyKey const& property_key) override virtual ThrowCompletionOr<bool> internal_delete(PropertyKey const& property_key) override
{ {
// 1. Assert: IsPropertyKey(P) is true.
VERIFY(property_key.is_valid()); VERIFY(property_key.is_valid());
// 2. Assert: O is an Integer-Indexed exotic object.
// NOTE: If the property name is a number type (An implementation-defined optimized // NOTE: If the property name is a number type (An implementation-defined optimized
// property key type), it can be treated as a string property that will transparently be // property key type), it can be treated as a string property that will transparently be
// converted into a canonical numeric index. // converted into a canonical numeric index.
// 3. If Type(P) is String, then // 1. If Type(P) is String, then
// NOTE: This includes an implementation-defined optimization, see note above! // NOTE: This includes an implementation-defined optimization, see note above!
if (property_key.is_string() || property_key.is_number()) { if (property_key.is_string() || property_key.is_number()) {
// a. Let numericIndex be ! CanonicalNumericIndexString(P). // a. Let numericIndex be ! CanonicalNumericIndexString(P).
@ -374,7 +361,7 @@ public:
} }
} }
// 4. Return ? OrdinaryDelete(O, P). // 2. Return ? OrdinaryDelete(O, P).
return Object::internal_delete(property_key); return Object::internal_delete(property_key);
} }
@ -386,9 +373,7 @@ public:
// 1. Let keys be a new empty List. // 1. Let keys be a new empty List.
auto keys = MarkedVector<Value> { heap() }; auto keys = MarkedVector<Value> { heap() };
// 2. Assert: O is an Integer-Indexed exotic object. // 2. If IsDetachedBuffer(O.[[ViewedArrayBuffer]]) is false, then
// 3. If IsDetachedBuffer(O.[[ViewedArrayBuffer]]) is false, then
if (!m_viewed_array_buffer->is_detached()) { if (!m_viewed_array_buffer->is_detached()) {
// a. For each integer i starting with 0 such that i < O.[[ArrayLength]], in ascending order, do // a. For each integer i starting with 0 such that i < O.[[ArrayLength]], in ascending order, do
for (size_t i = 0; i < m_array_length; ++i) { for (size_t i = 0; i < m_array_length; ++i) {
@ -397,7 +382,7 @@ public:
} }
} }
// 4. For each own property key P of O such that Type(P) is String and P is not an integer index, in ascending chronological order of property creation, do // 3. For each own property key P of O such that Type(P) is String and P is not an integer index, in ascending chronological order of property creation, do
for (auto& it : shape().property_table_ordered()) { for (auto& it : shape().property_table_ordered()) {
if (it.key.is_string()) { if (it.key.is_string()) {
// a. Add P as the last element of keys. // a. Add P as the last element of keys.
@ -405,7 +390,7 @@ public:
} }
} }
// 5. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property creation, do // 4. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property creation, do
for (auto& it : shape().property_table_ordered()) { for (auto& it : shape().property_table_ordered()) {
if (it.key.is_symbol()) { if (it.key.is_symbol()) {
// a. Add P as the last element of keys. // a. Add P as the last element of keys.
@ -413,7 +398,7 @@ public:
} }
} }
// 6. Return keys. // 5. Return keys.
return { move(keys) }; return { move(keys) };
} }