1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-27 11:37:34 +00:00

LibGfx: Refactor Vector[2,3,4] to VectorN with specializations

`Gfx::Vector[2,3,4]` are nearly identical implementations. This code
redundancy does not follow the DRY (Don't Repeat Yourself) principle
leading to possible out-of-sync errors between the classes.

Combining these classes into a class template which can be specialized
for each needed size makes the differences obvious through
`constexpr-if` blocks and `requires` clauses.
This commit is contained in:
Lenny Maiorani 2022-01-06 19:36:07 -07:00 committed by Andreas Kling
parent c2a66b77df
commit d144da3a62
4 changed files with 252 additions and 397 deletions

View file

@ -1,149 +1,24 @@
/*
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Math.h>
#include <AK/String.h>
#include "VectorN.h"
#include <AK/Error.h>
#include <AK/Format.h>
#include <AK/StringView.h>
namespace Gfx {
template<typename T>
class Vector3 final {
public:
constexpr Vector3() = default;
constexpr Vector3(T x, T y, T z)
: m_x(x)
, m_y(y)
, m_z(z)
{
}
constexpr T x() const { return m_x; }
constexpr T y() const { return m_y; }
constexpr T z() const { return m_z; }
constexpr void set_x(T value) { m_x = value; }
constexpr void set_y(T value) { m_y = value; }
constexpr void set_z(T value) { m_z = value; }
constexpr Vector3& operator+=(const Vector3& other)
{
m_x += other.m_x;
m_y += other.m_y;
m_z += other.m_z;
return *this;
}
constexpr Vector3& operator-=(const Vector3& other)
{
m_x -= other.m_x;
m_y -= other.m_y;
m_z -= other.m_z;
return *this;
}
constexpr Vector3 operator+(const Vector3& other) const
{
return Vector3(m_x + other.m_x, m_y + other.m_y, m_z + other.m_z);
}
constexpr Vector3 operator-(const Vector3& other) const
{
return Vector3(m_x - other.m_x, m_y - other.m_y, m_z - other.m_z);
}
constexpr Vector3 operator-() const
{
return Vector3(-m_x, -m_y, -m_z);
}
constexpr Vector3 operator*(const Vector3& other) const
{
return Vector3(m_x * other.m_x, m_y * other.m_y, m_z * other.m_z);
}
constexpr Vector3 operator/(const Vector3& other) const
{
return Vector3(m_x / other.m_x, m_y / other.m_y, m_z / other.m_z);
}
template<typename U>
constexpr Vector3 operator*(U f) const
{
return Vector3(m_x * f, m_y * f, m_z * f);
}
template<typename U>
constexpr Vector3 operator/(U f) const
{
return Vector3(m_x / f, m_y / f, m_z / f);
}
constexpr T dot(const Vector3& other) const
{
return m_x * other.m_x + m_y * other.m_y + m_z * other.m_z;
}
constexpr Vector3 cross(const Vector3& other) const
{
return Vector3(
m_y * other.m_z - m_z * other.m_y,
m_z * other.m_x - m_x * other.m_z,
m_x * other.m_y - m_y * other.m_x);
}
constexpr Vector3 normalized() const
{
T inv_length = 1 / length();
return *this * inv_length;
}
constexpr Vector3 clamped(T m, T x) const
{
Vector3 copy { *this };
copy.clamp(m, x);
return copy;
}
constexpr void clamp(T min_value, T max_value)
{
m_x = max(min_value, m_x);
m_y = max(min_value, m_y);
m_z = max(min_value, m_z);
m_x = min(max_value, m_x);
m_y = min(max_value, m_y);
m_z = min(max_value, m_z);
}
constexpr void normalize()
{
T inv_length = 1 / length();
m_x *= inv_length;
m_y *= inv_length;
m_z *= inv_length;
}
constexpr T length() const
{
return AK::sqrt(m_x * m_x + m_y * m_y + m_z * m_z);
}
String to_string() const
{
return String::formatted("[{},{},{}]", x(), y(), z());
}
private:
T m_x;
T m_y;
T m_z;
};
typedef Vector3<float> FloatVector3;
typedef Vector3<double> DoubleVector3;
template<class T>
using Vector3 = VectorN<3, T>;
using FloatVector3 = Vector3<float>;
using DoubleVector3 = Vector3<double>;
}