1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-27 03:17:35 +00:00

LibGfx: Refactor Vector[2,3,4] to VectorN with specializations

`Gfx::Vector[2,3,4]` are nearly identical implementations. This code
redundancy does not follow the DRY (Don't Repeat Yourself) principle
leading to possible out-of-sync errors between the classes.

Combining these classes into a class template which can be specialized
for each needed size makes the differences obvious through
`constexpr-if` blocks and `requires` clauses.
This commit is contained in:
Lenny Maiorani 2022-01-06 19:36:07 -07:00 committed by Andreas Kling
parent c2a66b77df
commit d144da3a62
4 changed files with 252 additions and 397 deletions

View file

@ -1,158 +1,24 @@
/*
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Math.h>
#include <AK/String.h>
#include "VectorN.h"
#include <AK/Error.h>
#include <AK/Format.h>
#include <AK/StringView.h>
namespace Gfx {
template<typename T>
class Vector3;
template<typename T>
class Vector4 final {
public:
constexpr Vector4() = default;
constexpr Vector4(T x, T y, T z, T w)
: m_x(x)
, m_y(y)
, m_z(z)
, m_w(w)
{
}
constexpr T x() const { return m_x; }
constexpr T y() const { return m_y; }
constexpr T z() const { return m_z; }
constexpr T w() const { return m_w; }
constexpr void set_x(T value) { m_x = value; }
constexpr void set_y(T value) { m_y = value; }
constexpr void set_z(T value) { m_z = value; }
constexpr void set_w(T value) { m_w = value; }
constexpr Vector4& operator+=(const Vector4& other)
{
m_x += other.m_x;
m_y += other.m_y;
m_z += other.m_z;
m_w += other.m_w;
return *this;
}
constexpr Vector4& operator-=(const Vector4& other)
{
m_x -= other.m_x;
m_y -= other.m_y;
m_z -= other.m_z;
m_w -= other.m_w;
return *this;
}
constexpr Vector4 operator+(const Vector4& other) const
{
return Vector4(m_x + other.m_x, m_y + other.m_y, m_z + other.m_z, m_w + other.m_w);
}
constexpr Vector4 operator-(const Vector4& other) const
{
return Vector4(m_x - other.m_x, m_y - other.m_y, m_z - other.m_z, m_w - other.m_w);
}
constexpr Vector4 operator-() const
{
return Vector4(-m_x, -m_y, -m_z, -m_w);
}
constexpr Vector4 operator*(const Vector4& other) const
{
return Vector4(m_x * other.m_x, m_y * other.m_y, m_z * other.m_z, m_w * other.m_w);
}
constexpr Vector4 operator/(const Vector4& other) const
{
return Vector4(m_x / other.m_x, m_y / other.m_y, m_z / other.m_z, m_w / other.m_w);
}
template<typename U>
constexpr Vector4 operator*(U f) const
{
return Vector4(m_x * f, m_y * f, m_z * f, m_w * f);
}
template<typename U>
constexpr Vector4 operator/(U f) const
{
return Vector4(m_x / f, m_y / f, m_z / f, m_w / f);
}
constexpr T dot(const Vector4& other) const
{
return m_x * other.m_x + m_y * other.m_y + m_z * other.m_z + m_w * other.m_w;
}
constexpr Vector4 normalized() const
{
T inv_length = 1 / length();
return *this * inv_length;
}
constexpr Vector4 clamped(T m, T x) const
{
Vector4 copy { *this };
copy.clamp(m, x);
return copy;
}
constexpr void clamp(T min_value, T max_value)
{
m_x = max(min_value, m_x);
m_y = max(min_value, m_y);
m_z = max(min_value, m_z);
m_w = max(min_value, m_w);
m_x = min(max_value, m_x);
m_y = min(max_value, m_y);
m_z = min(max_value, m_z);
m_w = min(max_value, m_w);
}
constexpr void normalize()
{
T inv_length = 1 / length();
m_x *= inv_length;
m_y *= inv_length;
m_z *= inv_length;
m_w *= inv_length;
}
constexpr T length() const
{
return AK::sqrt(m_x * m_x + m_y * m_y + m_z * m_z + m_w * m_w);
}
constexpr Vector3<T> xyz() const
{
return Vector3<T>(m_x, m_y, m_z);
}
String to_string() const
{
return String::formatted("[{},{},{},{}]", x(), y(), z(), w());
}
private:
T m_x;
T m_y;
T m_z;
T m_w;
};
typedef Vector4<float> FloatVector4;
typedef Vector4<double> DoubleVector4;
template<class T>
using Vector4 = VectorN<4, T>;
using FloatVector4 = Vector4<float>;
using DoubleVector4 = Vector4<double>;
}