1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-27 06:27:45 +00:00

LibJS: Implement Number.prototype.toPrecision

As noted in the prototype comments, this implementation becomes less
accurate as the precision approaches the limit of 100. For example:

    (3).toPrecision(100)

Should result in "3." followed by 99 "0"s. However, due to the loss of
accuracy in the floating point computations, we currently result in
"2.9999999...".
This commit is contained in:
Timothy Flynn 2022-01-02 23:06:51 -05:00 committed by Linus Groh
parent f1eb975a7a
commit dc984c53d8
5 changed files with 260 additions and 0 deletions

View file

@ -468,6 +468,7 @@ namespace JS {
P(toPlainMonthDay) \ P(toPlainMonthDay) \
P(toPlainTime) \ P(toPlainTime) \
P(toPlainYearMonth) \ P(toPlainYearMonth) \
P(toPrecision) \
P(toString) \ P(toString) \
P(total) \ P(total) \
P(toTemporalInstant) \ P(toTemporalInstant) \

View file

@ -50,6 +50,7 @@
M(InvalidIndex, "Index must be a positive integer") \ M(InvalidIndex, "Index must be a positive integer") \
M(InvalidLeftHandAssignment, "Invalid left-hand side in assignment") \ M(InvalidLeftHandAssignment, "Invalid left-hand side in assignment") \
M(InvalidLength, "Invalid {} length") \ M(InvalidLength, "Invalid {} length") \
M(InvalidPrecision, "Precision must be an integer no less than 1, and no greater than 100") \
M(InvalidTimeValue, "Invalid time value") \ M(InvalidTimeValue, "Invalid time value") \
M(InvalidRadix, "Radix must be an integer no less than 2, and no greater than 36") \ M(InvalidRadix, "Radix must be an integer no less than 2, and no greater than 36") \
M(IsNotA, "{} is not a {}") \ M(IsNotA, "{} is not a {}") \

View file

@ -15,6 +15,7 @@
#include <LibJS/Runtime/Intl/NumberFormatConstructor.h> #include <LibJS/Runtime/Intl/NumberFormatConstructor.h>
#include <LibJS/Runtime/NumberObject.h> #include <LibJS/Runtime/NumberObject.h>
#include <LibJS/Runtime/NumberPrototype.h> #include <LibJS/Runtime/NumberPrototype.h>
#include <math.h>
namespace JS { namespace JS {
@ -29,6 +30,23 @@ static const u8 max_precision_for_radix[37] = {
static char digits[] = "0123456789abcdefghijklmnopqrstuvwxyz"; static char digits[] = "0123456789abcdefghijklmnopqrstuvwxyz";
static String decimal_digits_to_string(double number)
{
StringBuilder builder;
double integral_part = 0;
(void)modf(number, &integral_part);
while (integral_part > 0) {
auto index = static_cast<size_t>(fmod(integral_part, 10));
builder.append(digits[index]);
integral_part = floor(integral_part / 10.0);
}
return builder.build().reverse();
}
NumberPrototype::NumberPrototype(GlobalObject& global_object) NumberPrototype::NumberPrototype(GlobalObject& global_object)
: NumberObject(0, *global_object.object_prototype()) : NumberObject(0, *global_object.object_prototype())
{ {
@ -41,6 +59,7 @@ void NumberPrototype::initialize(GlobalObject& object)
u8 attr = Attribute::Configurable | Attribute::Writable; u8 attr = Attribute::Configurable | Attribute::Writable;
define_native_function(vm.names.toFixed, to_fixed, 1, attr); define_native_function(vm.names.toFixed, to_fixed, 1, attr);
define_native_function(vm.names.toLocaleString, to_locale_string, 0, attr); define_native_function(vm.names.toLocaleString, to_locale_string, 0, attr);
define_native_function(vm.names.toPrecision, to_precision, 1, attr);
define_native_function(vm.names.toString, to_string, 1, attr); define_native_function(vm.names.toString, to_string, 1, attr);
define_native_function(vm.names.valueOf, value_of, 0, attr); define_native_function(vm.names.valueOf, value_of, 0, attr);
} }
@ -133,6 +152,138 @@ JS_DEFINE_NATIVE_FUNCTION(NumberPrototype::to_locale_string)
return js_string(vm, move(formatted)); return js_string(vm, move(formatted));
} }
// 21.1.3.5 Number.prototype.toPrecision ( precision ), https://tc39.es/ecma262/#sec-number.prototype.toprecision
JS_DEFINE_NATIVE_FUNCTION(NumberPrototype::to_precision)
{
auto precision_value = vm.argument(0);
// 1. Let x be ? thisNumberValue(this value).
auto number_value = TRY(this_number_value(global_object, vm.this_value(global_object)));
// 2. If precision is undefined, return ! ToString(x).
if (precision_value.is_undefined())
return js_string(vm, MUST(number_value.to_string(global_object)));
// 3. Let p be ? ToIntegerOrInfinity(precision).
auto precision = TRY(precision_value.to_integer_or_infinity(global_object));
// 4. If x is not finite, return ! Number::toString(x).
if (!number_value.is_finite_number())
return js_string(vm, MUST(number_value.to_string(global_object)));
// 5. If p < 1 or p > 100, throw a RangeError exception.
if ((precision < 1) || (precision > 100))
return vm.throw_completion<RangeError>(global_object, ErrorType::InvalidPrecision);
// 6. Set x to (x).
auto number = number_value.as_double();
// 7. Let s be the empty String.
auto sign = ""sv;
String number_string;
int exponent = 0;
// 8. If x < 0, then
if (number < 0) {
// a. Set s to the code unit 0x002D (HYPHEN-MINUS).
sign = "-"sv;
// b. Set x to -x.
number = -number;
}
// 9. If x = 0, then
if (number == 0) {
// a. Let m be the String value consisting of p occurrences of the code unit 0x0030 (DIGIT ZERO).
number_string = String::repeated('0', precision);
// b. Let e be 0.
exponent = 0;
}
// 10. Else,
else {
// FIXME: The computations below fall apart for large values of 'p'. A double typically has 52 mantissa bits, which gives us
// up to 2^52 before loss of precision. However, the largest value of 'p' may be 100, resulting in numbers on the order
// of 10^100, thus we lose precision in these computations.
// a. Let e and n be integers such that 10^(p-1) ≤ n < 10^p and for which n × 10^(e-p+1) - x is as close to zero as possible.
// If there are two such sets of e and n, pick the e and n for which n × 10^(e-p+1) is larger.
exponent = static_cast<int>(floor(log10(number)));
number = round(number / pow(10, exponent - precision + 1));
// b. Let m be the String value consisting of the digits of the decimal representation of n (in order, with no leading zeroes).
number_string = decimal_digits_to_string(number);
// c. If e < -6 or e ≥ p, then
if ((exponent < -6) || (exponent >= precision)) {
// i. Assert: e ≠ 0.
VERIFY(exponent != 0);
// ii. If p ≠ 1, then
if (precision != 1) {
// 1. Let a be the first code unit of m.
auto first = number_string.substring_view(0, 1);
// 2. Let b be the other p - 1 code units of m.
auto second = number_string.substring_view(1);
// 3. Set m to the string-concatenation of a, ".", and b.
number_string = String::formatted("{}.{}", first, second);
}
char exponent_sign = 0;
// iii. If e > 0, then
if (exponent > 0) {
// 1. Let c be the code unit 0x002B (PLUS SIGN).
exponent_sign = '+';
}
// iv. Else,
else {
// 1. Assert: e < 0.
VERIFY(exponent < 0);
// 2. Let c be the code unit 0x002D (HYPHEN-MINUS).
exponent_sign = '-';
// 3. Set e to -e.
exponent = -exponent;
}
// v. Let d be the String value consisting of the digits of the decimal representation of e (in order, with no leading zeroes).
auto exponent_string = String::number(exponent);
// vi. Return the string-concatenation of s, m, the code unit 0x0065 (LATIN SMALL LETTER E), c, and d.
return js_string(vm, String::formatted("{}{}e{}{}", sign, number_string, exponent_sign, exponent_string));
}
}
// 11. If e = p - 1, return the string-concatenation of s and m.
if (exponent == precision - 1)
return js_string(vm, String::formatted("{}{}", sign, number_string));
// 12. If e ≥ 0, then
if (exponent >= 0) {
// a. Set m to the string-concatenation of the first e + 1 code units of m, the code unit 0x002E (FULL STOP), and the remaining p - (e + 1) code units of m.
number_string = String::formatted(
"{}.{}",
number_string.substring_view(0, exponent + 1),
number_string.substring_view(exponent + 1));
}
// 13. Else,
else {
// a. Set m to the string-concatenation of the code unit 0x0030 (DIGIT ZERO), the code unit 0x002E (FULL STOP), -(e + 1) occurrences of the code unit 0x0030 (DIGIT ZERO), and the String m.
number_string = String::formatted(
"0.{}{}",
String::repeated('0', -1 * (exponent + 1)),
number_string);
}
// 14. Return the string-concatenation of s and m.
return js_string(vm, String::formatted("{}{}", sign, number_string));
}
// 21.1.3.6 Number.prototype.toString ( [ radix ] ), https://tc39.es/ecma262/#sec-number.prototype.tostring // 21.1.3.6 Number.prototype.toString ( [ radix ] ), https://tc39.es/ecma262/#sec-number.prototype.tostring
JS_DEFINE_NATIVE_FUNCTION(NumberPrototype::to_string) JS_DEFINE_NATIVE_FUNCTION(NumberPrototype::to_string)
{ {

View file

@ -20,6 +20,7 @@ public:
JS_DECLARE_NATIVE_FUNCTION(to_fixed); JS_DECLARE_NATIVE_FUNCTION(to_fixed);
JS_DECLARE_NATIVE_FUNCTION(to_locale_string); JS_DECLARE_NATIVE_FUNCTION(to_locale_string);
JS_DECLARE_NATIVE_FUNCTION(to_precision);
JS_DECLARE_NATIVE_FUNCTION(to_string); JS_DECLARE_NATIVE_FUNCTION(to_string);
JS_DECLARE_NATIVE_FUNCTION(value_of); JS_DECLARE_NATIVE_FUNCTION(value_of);
}; };

View file

@ -0,0 +1,106 @@
describe("errors", () => {
test("must be called with numeric |this|", () => {
[true, [], {}, Symbol("foo"), "bar", 1n].forEach(value => {
expect(() => {
Number.prototype.toPrecision.call(value);
}).toThrowWithMessage(TypeError, "Not an object of type Number");
});
});
test("precision must be coercible to a number", () => {
expect(() => {
(0).toPrecision(Symbol("foo"));
}).toThrowWithMessage(TypeError, "Cannot convert symbol to number");
expect(() => {
(0).toPrecision(1n);
}).toThrowWithMessage(TypeError, "Cannot convert BigInt to number");
});
test("out of range precision", () => {
[-Infinity, 0, 101, Infinity].forEach(value => {
expect(() => {
(0).toPrecision(value);
}).toThrowWithMessage(
RangeError,
"Precision must be an integer no less than 1, and no greater than 100"
);
});
});
});
describe("correct behavior", () => {
test("special values", () => {
[
[Infinity, 6, "Infinity"],
[-Infinity, 7, "-Infinity"],
[NaN, 8, "NaN"],
[0, 1, "0"],
[0, 3, "0.00"],
[0, 5, "0.0000"],
].forEach(test => {
expect(test[0].toPrecision(test[1])).toBe(test[2]);
});
});
test("undefined precision yields plain number-to-string conversion", () => {
[
[123, undefined, "123"],
[3.14, undefined, "3.14"],
].forEach(test => {
expect(test[0].toPrecision(test[1])).toBe(test[2]);
});
});
test("formatted as exponential string", () => {
[
// exponent < -6
[0.0000002, 5, "2.0000e-7"],
[0.00000000189, 3, "1.89e-9"],
[0.00000000189, 2, "1.9e-9"],
// exponent >= precision
[100, 1, "1e+2"],
[100, 2, "1.0e+2"],
[1234589, 3, "1.23e+6"],
[1234589, 4, "1.235e+6"],
[1234589, 5, "1.2346e+6"],
].forEach(test => {
expect(test[0].toPrecision(test[1])).toBe(test[2]);
});
});
test("formatted without decimal", () => {
[
// exponent == precision - 1
[1, 1, "1"],
[123, 3, "123"],
[123.45, 3, "123"],
].forEach(test => {
expect(test[0].toPrecision(test[1])).toBe(test[2]);
});
});
test("non-negative exponent", () => {
[
// exponent >= 0
[1, 4, "1.000"],
[123, 4, "123.0"],
[123.45, 4, "123.5"],
].forEach(test => {
expect(test[0].toPrecision(test[1])).toBe(test[2]);
});
});
test("negative exponent", () => {
[
// exponent < 0
[0.1, 1, "0.1"],
[0.0123, 3, "0.0123"],
[0.0012345, 3, "0.00123"],
[0.0012345, 4, "0.001235"],
].forEach(test => {
expect(test[0].toPrecision(test[1])).toBe(test[2]);
});
});
});