mirror of
https://github.com/RGBCube/serenity
synced 2025-07-26 17:57:34 +00:00
LibCrypto: Move all elliptic curve private methods into .cpp
All the elliptic curve implementations had a long list of private methods which were all stored in a single .cpp file. Now we simply use static methods instead.
This commit is contained in:
parent
596391a4ee
commit
e07ec02470
6 changed files with 171 additions and 220 deletions
|
@ -11,19 +11,24 @@
|
|||
|
||||
namespace Crypto::Curves {
|
||||
|
||||
void X25519::import_state(u32* state, ReadonlyBytes data)
|
||||
static constexpr u8 BITS = 255;
|
||||
static constexpr u8 BYTES = 32;
|
||||
static constexpr u8 WORDS = 8;
|
||||
static constexpr u32 A24 = 121666;
|
||||
|
||||
static void import_state(u32* state, ReadonlyBytes data)
|
||||
{
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
u32 value = ByteReader::load32(data.offset_pointer(sizeof(u32) * i));
|
||||
state[i] = AK::convert_between_host_and_little_endian(value);
|
||||
}
|
||||
}
|
||||
|
||||
ErrorOr<ByteBuffer> X25519::export_state(u32* data)
|
||||
static ErrorOr<ByteBuffer> export_state(u32* data)
|
||||
{
|
||||
auto buffer = TRY(ByteBuffer::create_uninitialized(X25519::BYTES));
|
||||
auto buffer = TRY(ByteBuffer::create_uninitialized(BYTES));
|
||||
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
u32 value = AK::convert_between_host_and_little_endian(data[i]);
|
||||
ByteReader::store(buffer.offset_pointer(sizeof(u32) * i), value);
|
||||
}
|
||||
|
@ -31,49 +36,68 @@ ErrorOr<ByteBuffer> X25519::export_state(u32* data)
|
|||
return buffer;
|
||||
}
|
||||
|
||||
void X25519::select(u32* state, u32* a, u32* b, u32 condition)
|
||||
static void select(u32* state, u32* a, u32* b, u32 condition)
|
||||
{
|
||||
// If B < (2^255 - 19) then R = B, else R = A
|
||||
u32 mask = condition - 1;
|
||||
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
state[i] = (a[i] & mask) | (b[i] & ~mask);
|
||||
}
|
||||
}
|
||||
|
||||
void X25519::set(u32* state, u32 value)
|
||||
static void set(u32* state, u32 value)
|
||||
{
|
||||
state[0] = value;
|
||||
|
||||
for (auto i = 1; i < X25519::WORDS; i++) {
|
||||
for (auto i = 1; i < WORDS; i++) {
|
||||
state[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void X25519::copy(u32* state, u32* value)
|
||||
static void copy(u32* state, u32* value)
|
||||
{
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
state[i] = value[i];
|
||||
}
|
||||
}
|
||||
|
||||
void X25519::conditional_swap(u32* first, u32* second, u32 condition)
|
||||
static void conditional_swap(u32* first, u32* second, u32 condition)
|
||||
{
|
||||
u32 mask = ~condition + 1;
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
u32 temp = mask & (first[i] ^ second[i]);
|
||||
first[i] ^= temp;
|
||||
second[i] ^= temp;
|
||||
}
|
||||
}
|
||||
|
||||
void X25519::modular_multiply_single(u32* state, u32* first, u32 second)
|
||||
static void modular_reduce(u32* state, u32* data)
|
||||
{
|
||||
// R = A mod p
|
||||
u64 temp = 19;
|
||||
u32 other[WORDS];
|
||||
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
temp += data[i];
|
||||
other[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
// Compute B = A - (2^255 - 19)
|
||||
other[7] -= 0x80000000;
|
||||
|
||||
u32 mask = (other[7] & 0x80000000) >> 31;
|
||||
select(state, other, data, mask);
|
||||
}
|
||||
|
||||
static void modular_multiply_single(u32* state, u32* first, u32 second)
|
||||
{
|
||||
// Compute R = (A * B) mod p
|
||||
u64 temp = 0;
|
||||
u32 output[X25519::WORDS];
|
||||
u32 output[WORDS];
|
||||
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
temp += (u64)first[i] * second;
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
|
@ -87,7 +111,7 @@ void X25519::modular_multiply_single(u32* state, u32* first, u32 second)
|
|||
output[7] &= 0x7FFFFFFF;
|
||||
|
||||
// Fast modular reduction
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
temp += output[i];
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
|
@ -96,29 +120,23 @@ void X25519::modular_multiply_single(u32* state, u32* first, u32 second)
|
|||
modular_reduce(state, output);
|
||||
}
|
||||
|
||||
void X25519::modular_square(u32* state, u32* value)
|
||||
{
|
||||
// Compute R = (A ^ 2) mod p
|
||||
modular_multiply(state, value, value);
|
||||
}
|
||||
|
||||
void X25519::modular_multiply(u32* state, u32* first, u32* second)
|
||||
static void modular_multiply(u32* state, u32* first, u32* second)
|
||||
{
|
||||
// Compute R = (A * B) mod p
|
||||
u64 temp = 0;
|
||||
u64 carry = 0;
|
||||
u32 output[X25519::WORDS * 2];
|
||||
u32 output[WORDS * 2];
|
||||
|
||||
// Comba's method
|
||||
for (auto i = 0; i < 16; i++) {
|
||||
if (i < X25519::WORDS) {
|
||||
if (i < WORDS) {
|
||||
for (auto j = 0; j <= i; j++) {
|
||||
temp += (u64)first[j] * second[i - j];
|
||||
carry += temp >> 32;
|
||||
temp &= 0xFFFFFFFF;
|
||||
}
|
||||
} else {
|
||||
for (auto j = i - 7; j < X25519::WORDS; j++) {
|
||||
for (auto j = i - 7; j < WORDS; j++) {
|
||||
temp += (u64)first[j] * second[i - j];
|
||||
carry += temp >> 32;
|
||||
temp &= 0xFFFFFFFF;
|
||||
|
@ -136,7 +154,7 @@ void X25519::modular_multiply(u32* state, u32* first, u32* second)
|
|||
output[7] &= 0x7FFFFFFF;
|
||||
|
||||
// Fast modular reduction 1st pass
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
temp += output[i];
|
||||
temp += (u64)output[i + 8] * 38;
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
|
@ -151,7 +169,7 @@ void X25519::modular_multiply(u32* state, u32* first, u32* second)
|
|||
output[7] &= 0x7FFFFFFF;
|
||||
|
||||
// Fast modular reduction 2nd pass
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
temp += output[i];
|
||||
output[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
|
@ -160,11 +178,17 @@ void X25519::modular_multiply(u32* state, u32* first, u32* second)
|
|||
modular_reduce(state, output);
|
||||
}
|
||||
|
||||
void X25519::modular_add(u32* state, u32* first, u32* second)
|
||||
static void modular_square(u32* state, u32* value)
|
||||
{
|
||||
// Compute R = (A ^ 2) mod p
|
||||
modular_multiply(state, value, value);
|
||||
}
|
||||
|
||||
static void modular_add(u32* state, u32* first, u32* second)
|
||||
{
|
||||
// R = (A + B) mod p
|
||||
u64 temp = 0;
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
temp += first[i];
|
||||
temp += second[i];
|
||||
state[i] = temp & 0xFFFFFFFF;
|
||||
|
@ -174,11 +198,11 @@ void X25519::modular_add(u32* state, u32* first, u32* second)
|
|||
modular_reduce(state, state);
|
||||
}
|
||||
|
||||
void X25519::modular_subtract(u32* state, u32* first, u32* second)
|
||||
static void modular_subtract(u32* state, u32* first, u32* second)
|
||||
{
|
||||
// R = (A - B) mod p
|
||||
i64 temp = -19;
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
for (auto i = 0; i < WORDS; i++) {
|
||||
temp += first[i];
|
||||
temp -= second[i];
|
||||
state[i] = temp & 0xFFFFFFFF;
|
||||
|
@ -191,26 +215,7 @@ void X25519::modular_subtract(u32* state, u32* first, u32* second)
|
|||
modular_reduce(state, state);
|
||||
}
|
||||
|
||||
void X25519::modular_reduce(u32* state, u32* data)
|
||||
{
|
||||
// R = A mod p
|
||||
u64 temp = 19;
|
||||
u32 other[X25519::WORDS];
|
||||
|
||||
for (auto i = 0; i < X25519::WORDS; i++) {
|
||||
temp += data[i];
|
||||
other[i] = temp & 0xFFFFFFFF;
|
||||
temp >>= 32;
|
||||
}
|
||||
|
||||
// Compute B = A - (2^255 - 19)
|
||||
other[7] -= 0x80000000;
|
||||
|
||||
u32 mask = (other[7] & 0x80000000) >> 31;
|
||||
select(state, other, data, mask);
|
||||
}
|
||||
|
||||
void X25519::to_power_of_2n(u32* state, u32* value, u8 n)
|
||||
static void to_power_of_2n(u32* state, u32* value, u8 n)
|
||||
{
|
||||
// compute R = (A ^ (2^n)) mod p
|
||||
modular_square(state, value);
|
||||
|
@ -219,11 +224,11 @@ void X25519::to_power_of_2n(u32* state, u32* value, u8 n)
|
|||
}
|
||||
}
|
||||
|
||||
void X25519::modular_multiply_inverse(u32* state, u32* value)
|
||||
static void modular_multiply_inverse(u32* state, u32* value)
|
||||
{
|
||||
// Compute R = A^-1 mod p
|
||||
u32 u[X25519::WORDS];
|
||||
u32 v[X25519::WORDS];
|
||||
u32 u[WORDS];
|
||||
u32 v[WORDS];
|
||||
|
||||
// Fermat's little theorem
|
||||
modular_square(u, value);
|
||||
|
@ -276,14 +281,14 @@ ErrorOr<ByteBuffer> X25519::generate_public_key(ReadonlyBytes a)
|
|||
// https://datatracker.ietf.org/doc/html/rfc7748#section-5
|
||||
ErrorOr<ByteBuffer> X25519::compute_coordinate(ReadonlyBytes input_k, ReadonlyBytes input_u)
|
||||
{
|
||||
u32 k[X25519::WORDS] {};
|
||||
u32 u[X25519::WORDS] {};
|
||||
u32 x1[X25519::WORDS] {};
|
||||
u32 x2[X25519::WORDS] {};
|
||||
u32 z1[X25519::WORDS] {};
|
||||
u32 z2[X25519::WORDS] {};
|
||||
u32 t1[X25519::WORDS] {};
|
||||
u32 t2[X25519::WORDS] {};
|
||||
u32 k[WORDS] {};
|
||||
u32 u[WORDS] {};
|
||||
u32 x1[WORDS] {};
|
||||
u32 x2[WORDS] {};
|
||||
u32 z1[WORDS] {};
|
||||
u32 z2[WORDS] {};
|
||||
u32 t1[WORDS] {};
|
||||
u32 t2[WORDS] {};
|
||||
|
||||
// Copy input to internal state
|
||||
import_state(k, input_k);
|
||||
|
@ -310,8 +315,8 @@ ErrorOr<ByteBuffer> X25519::compute_coordinate(ReadonlyBytes input_k, ReadonlyBy
|
|||
|
||||
// Montgomery ladder
|
||||
u32 swap = 0;
|
||||
for (auto i = X25519::BITS - 1; i >= 0; i--) {
|
||||
u32 b = (k[i / X25519::BYTES] >> (i % X25519::BYTES)) & 1;
|
||||
for (auto i = BITS - 1; i >= 0; i--) {
|
||||
u32 b = (k[i / BYTES] >> (i % BYTES)) & 1;
|
||||
|
||||
conditional_swap(x1, x2, swap ^ b);
|
||||
conditional_swap(z1, z2, swap ^ b);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue