1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 05:08:13 +00:00

Kernel: Rename LinearAddress => VirtualAddress.

This commit is contained in:
Andreas Kling 2019-06-07 12:56:50 +02:00
parent 0ed89440f1
commit e42c3b4fd7
33 changed files with 272 additions and 272 deletions

View file

@ -66,14 +66,14 @@ void MemoryManager::initialize_paging()
dbgprintf("MM: Protect against null dereferences\n");
#endif
// Make null dereferences crash.
map_protected(LinearAddress(0), PAGE_SIZE);
map_protected(VirtualAddress(0), PAGE_SIZE);
#ifdef MM_DEBUG
dbgprintf("MM: Identity map bottom 4MB\n");
#endif
// The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
// Every process shares these mappings.
create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
// Basic memory map:
// 0 -> 512 kB Kernel code. Root page directory & PDE 0.
@ -90,7 +90,7 @@ void MemoryManager::initialize_paging()
dbgprintf("MM: 4MB-%uMB available for allocation\n", m_ram_size / 1048576);
for (size_t i = (4 * MB); i < m_ram_size; i += PAGE_SIZE)
m_free_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), false));
m_quickmap_addr = LinearAddress((1 * MB) - PAGE_SIZE);
m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
#ifdef MM_DEBUG
dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
dbgprintf("MM: Installing page directory\n");
@ -118,12 +118,12 @@ RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_d
return physical_page;
}
void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
{
InterruptDisabler disabler;
// FIXME: ASSERT(laddr is 4KB aligned);
// FIXME: ASSERT(vaddr is 4KB aligned);
for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
auto pte_address = laddr.offset(offset);
auto pte_address = vaddr.offset(offset);
auto pte = ensure_pte(page_directory, pte_address);
pte.set_physical_page_base(0);
pte.set_user_allowed(false);
@ -133,16 +133,16 @@ void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, Linea
}
}
auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
auto MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr) -> PageTableEntry
{
ASSERT_INTERRUPTS_DISABLED();
dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
dword page_table_index = (laddr.get() >> 12) & 0x3ff;
dword page_directory_index = (vaddr.get() >> 22) & 0x3ff;
dword page_table_index = (vaddr.get() >> 12) & 0x3ff;
PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
if (!pde.is_present()) {
#ifdef MM_DEBUG
dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, vaddr.get());
#endif
if (page_directory_index == 0) {
ASSERT(&page_directory == m_kernel_page_directory);
@ -159,7 +159,7 @@ auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress ladd
&page_directory == m_kernel_page_directory ? "Kernel" : "User",
page_directory.cr3(),
page_directory_index,
laddr.get(),
vaddr.get(),
page_table->paddr().get());
#endif
@ -173,12 +173,12 @@ auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress ladd
return PageTableEntry(&pde.page_table_base()[page_table_index]);
}
void MemoryManager::map_protected(LinearAddress laddr, size_t length)
void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
{
InterruptDisabler disabler;
// FIXME: ASSERT(linearAddress is 4KB aligned);
for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
auto pte_address = laddr.offset(offset);
auto pte_address = vaddr.offset(offset);
auto pte = ensure_pte(kernel_page_directory(), pte_address);
pte.set_physical_page_base(pte_address.get());
pte.set_user_allowed(false);
@ -188,12 +188,12 @@ void MemoryManager::map_protected(LinearAddress laddr, size_t length)
}
}
void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
{
InterruptDisabler disabler;
ASSERT((laddr.get() & ~PAGE_MASK) == 0);
ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
auto pte_address = laddr.offset(offset);
auto pte_address = vaddr.offset(offset);
auto pte = ensure_pte(page_directory, pte_address);
pte.set_physical_page_base(pte_address.get());
pte.set_user_allowed(false);
@ -208,41 +208,41 @@ void MemoryManager::initialize()
s_the = new MemoryManager;
}
Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
{
ASSERT_INTERRUPTS_DISABLED();
if (laddr.get() >= 0xc0000000) {
if (vaddr.get() >= 0xc0000000) {
for (auto& region : MM.m_kernel_regions) {
if (region->contains(laddr))
if (region->contains(vaddr))
return region;
}
}
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
for (auto& region : process.m_regions) {
if (region->contains(laddr))
if (region->contains(vaddr))
return region.ptr();
}
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
return nullptr;
}
const Region* MemoryManager::region_from_laddr(const Process& process, LinearAddress laddr)
const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
{
if (laddr.get() >= 0xc0000000) {
if (vaddr.get() >= 0xc0000000) {
for (auto& region : MM.m_kernel_regions) {
if (region->contains(laddr))
if (region->contains(vaddr))
return region;
}
}
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
for (auto& region : process.m_regions) {
if (region->contains(laddr))
if (region->contains(vaddr))
return region.ptr();
}
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
return nullptr;
}
@ -290,7 +290,7 @@ bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
auto physical_page = allocate_physical_page(ShouldZeroFill::No);
byte* dest_ptr = quickmap_page(*physical_page);
const byte* src_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
const byte* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
#endif
@ -345,7 +345,7 @@ bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_re
return false;
}
remap_region_page(region, page_index_in_region, true);
byte* dest_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
byte* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
memcpy(dest_ptr, page_buffer, PAGE_SIZE);
return true;
}
@ -355,15 +355,15 @@ PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
ASSERT_INTERRUPTS_DISABLED();
ASSERT(current);
#ifdef PAGE_FAULT_DEBUG
dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.vaddr().get());
#endif
ASSERT(fault.laddr() != m_quickmap_addr);
auto* region = region_from_laddr(current->process(), fault.laddr());
ASSERT(fault.vaddr() != m_quickmap_addr);
auto* region = region_from_vaddr(current->process(), fault.vaddr());
if (!region) {
kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
kprintf("NP(error) fault at invalid address L%x\n", fault.vaddr().get());
return PageFaultResponse::ShouldCrash;
}
auto page_index_in_region = region->page_index_from_address(fault.laddr());
auto page_index_in_region = region->page_index_from_address(fault.vaddr());
if (fault.is_not_present()) {
if (region->vmo().inode()) {
#ifdef PAGE_FAULT_DEBUG
@ -387,7 +387,7 @@ PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
ASSERT(success);
return PageFaultResponse::Continue;
}
kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.laddr().get());
kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.vaddr().get());
} else {
ASSERT_NOT_REACHED();
}
@ -462,22 +462,22 @@ void MemoryManager::flush_entire_tlb()
: "%eax", "memory");
}
void MemoryManager::flush_tlb(LinearAddress laddr)
void MemoryManager::flush_tlb(VirtualAddress vaddr)
{
asm volatile("invlpg %0"
:
: "m"(*(char*)laddr.get())
: "m"(*(char*)vaddr.get())
: "memory");
}
void MemoryManager::map_for_kernel(LinearAddress laddr, PhysicalAddress paddr)
void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr)
{
auto pte = ensure_pte(kernel_page_directory(), laddr);
auto pte = ensure_pte(kernel_page_directory(), vaddr);
pte.set_physical_page_base(paddr.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb(laddr);
flush_tlb(vaddr);
}
byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
@ -485,35 +485,35 @@ byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!m_quickmap_in_use);
m_quickmap_in_use = true;
auto page_laddr = m_quickmap_addr;
auto pte = ensure_pte(kernel_page_directory(), page_laddr);
auto page_vaddr = m_quickmap_addr;
auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
pte.set_physical_page_base(physical_page.paddr().get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb(page_laddr);
flush_tlb(page_vaddr);
ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
#ifdef MM_DEBUG
dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_vaddr, physical_page.paddr().get(), pte.ptr());
#endif
return page_laddr.as_ptr();
return page_vaddr.as_ptr();
}
void MemoryManager::unquickmap_page()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(m_quickmap_in_use);
auto page_laddr = m_quickmap_addr;
auto pte = ensure_pte(kernel_page_directory(), page_laddr);
auto page_vaddr = m_quickmap_addr;
auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
#ifdef MM_DEBUG
auto old_physical_address = pte.physical_page_base();
#endif
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
flush_tlb(page_laddr);
flush_tlb(page_vaddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_vaddr, old_physical_address);
#endif
m_quickmap_in_use = false;
}
@ -522,8 +522,8 @@ void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_reg
{
ASSERT(region.page_directory());
InterruptDisabler disabler;
auto page_laddr = region.laddr().offset(page_index_in_region * PAGE_SIZE);
auto pte = ensure_pte(*region.page_directory(), page_laddr);
auto page_vaddr = region.vaddr().offset(page_index_in_region * PAGE_SIZE);
auto pte = ensure_pte(*region.page_directory(), page_vaddr);
auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
ASSERT(physical_page);
pte.set_physical_page_base(physical_page->paddr().get());
@ -535,9 +535,9 @@ void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_reg
pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
pte.set_write_through(!region.vmo().m_allow_cpu_caching);
pte.set_user_allowed(user_allowed);
region.page_directory()->flush(page_laddr);
region.page_directory()->flush(page_vaddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_vaddr.get(), physical_page->paddr().get(), physical_page.ptr());
#endif
}
@ -545,10 +545,10 @@ void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
{
InterruptDisabler disabler;
ASSERT(region.page_directory() == &page_directory);
map_region_at_address(page_directory, region, region.laddr(), true);
map_region_at_address(page_directory, region, region.vaddr(), true);
}
void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr, bool user_allowed)
{
InterruptDisabler disabler;
region.set_page_directory(page_directory);
@ -557,8 +557,8 @@ void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region&
dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
#endif
for (size_t i = 0; i < region.page_count(); ++i) {
auto page_laddr = laddr.offset(i * PAGE_SIZE);
auto pte = ensure_pte(page_directory, page_laddr);
auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
auto pte = ensure_pte(page_directory, page_vaddr);
auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
if (physical_page) {
pte.set_physical_page_base(physical_page->paddr().get());
@ -576,9 +576,9 @@ void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region&
pte.set_writable(region.is_writable());
}
pte.set_user_allowed(user_allowed);
page_directory.flush(page_laddr);
page_directory.flush(page_vaddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
#endif
}
}
@ -588,16 +588,16 @@ bool MemoryManager::unmap_region(Region& region)
ASSERT(region.page_directory());
InterruptDisabler disabler;
for (size_t i = 0; i < region.page_count(); ++i) {
auto laddr = region.laddr().offset(i * PAGE_SIZE);
auto pte = ensure_pte(*region.page_directory(), laddr);
auto vaddr = region.vaddr().offset(i * PAGE_SIZE);
auto pte = ensure_pte(*region.page_directory(), vaddr);
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
pte.set_user_allowed(false);
region.page_directory()->flush(laddr);
region.page_directory()->flush(vaddr);
#ifdef MM_DEBUG
auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
dbgprintf("MM: >> Unmapped L%x => P%x <<\n", vaddr, physical_page ? physical_page->paddr().get() : 0);
#endif
}
region.release_page_directory();
@ -606,19 +606,19 @@ bool MemoryManager::unmap_region(Region& region)
bool MemoryManager::map_region(Process& process, Region& region)
{
map_region_at_address(process.page_directory(), region, region.laddr(), true);
map_region_at_address(process.page_directory(), region, region.vaddr(), true);
return true;
}
bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
{
auto* region = region_from_laddr(process, laddr);
auto* region = region_from_vaddr(process, vaddr);
return region && region->is_readable();
}
bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
{
auto* region = region_from_laddr(process, laddr);
auto* region = region_from_vaddr(process, vaddr);
return region && region->is_writable();
}
@ -637,7 +637,7 @@ void MemoryManager::unregister_vmo(VMObject& vmo)
void MemoryManager::register_region(Region& region)
{
InterruptDisabler disabler;
if (region.laddr().get() >= 0xc0000000)
if (region.vaddr().get() >= 0xc0000000)
m_kernel_regions.set(&region);
else
m_user_regions.set(&region);
@ -646,7 +646,7 @@ void MemoryManager::register_region(Region& region)
void MemoryManager::unregister_region(Region& region)
{
InterruptDisabler disabler;
if (region.laddr().get() >= 0xc0000000)
if (region.vaddr().get() >= 0xc0000000)
m_kernel_regions.remove(&region);
else
m_user_regions.remove(&region);