1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 14:38:11 +00:00

Kernel: Rename LinearAddress => VirtualAddress.

This commit is contained in:
Andreas Kling 2019-06-07 12:56:50 +02:00
parent 0ed89440f1
commit e42c3b4fd7
33 changed files with 272 additions and 272 deletions

View file

@ -57,7 +57,7 @@ public:
dword type() const { return m_program_header.p_type; }
dword flags() const { return m_program_header.p_flags; }
dword offset() const { return m_program_header.p_offset; }
LinearAddress laddr() const { return LinearAddress(m_program_header.p_vaddr); }
VirtualAddress vaddr() const { return VirtualAddress(m_program_header.p_vaddr); }
dword size_in_memory() const { return m_program_header.p_memsz; }
dword size_in_image() const { return m_program_header.p_filesz; }
dword alignment() const { return m_program_header.p_align; }
@ -117,7 +117,7 @@ public:
bool is_executable() const { return header().e_type == ET_EXEC; }
bool is_relocatable() const { return header().e_type == ET_REL; }
LinearAddress entry() const { return LinearAddress(header().e_entry); }
VirtualAddress entry() const { return VirtualAddress(header().e_entry); }
private:
bool parse_header();

View file

@ -34,21 +34,21 @@ bool ELFLoader::layout()
if (program_header.type() != PT_LOAD)
return;
#ifdef ELFLOADER_DEBUG
kprintf("PH: L%x %u r:%u w:%u\n", program_header.laddr().get(), program_header.size_in_memory(), program_header.is_readable(), program_header.is_writable());
kprintf("PH: L%x %u r:%u w:%u\n", program_header.vaddr().get(), program_header.size_in_memory(), program_header.is_readable(), program_header.is_writable());
#endif
if (program_header.is_writable()) {
alloc_section_hook(
program_header.laddr(),
program_header.vaddr(),
program_header.size_in_memory(),
program_header.alignment(),
program_header.is_readable(),
program_header.is_writable(),
String::format("elf-alloc-%s%s", program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : "")
);
memcpy(program_header.laddr().as_ptr(), program_header.raw_data(), program_header.size_in_image());
memcpy(program_header.vaddr().as_ptr(), program_header.raw_data(), program_header.size_in_image());
} else {
map_section_hook(
program_header.laddr(),
program_header.vaddr(),
program_header.size_in_memory(),
program_header.alignment(),
program_header.offset(),

View file

@ -5,7 +5,7 @@
#include <AK/OwnPtr.h>
#include <AK/Vector.h>
#if defined(KERNEL)
#include <Kernel/LinearAddress.h>
#include <Kernel/VirtualAddress.h>
#endif
#include <AK/ELF/ELFImage.h>
@ -16,9 +16,9 @@ public:
bool load();
#if defined(KERNEL)
Function<void*(LinearAddress, size_t, size_t, bool, bool, const String&)> alloc_section_hook;
Function<void*(LinearAddress, size_t, size_t, size_t, bool r, bool w, bool x, const String&)> map_section_hook;
LinearAddress entry() const { return m_image.entry(); }
Function<void*(VirtualAddress, size_t, size_t, bool, bool, const String&)> alloc_section_hook;
Function<void*(VirtualAddress, size_t, size_t, size_t, bool r, bool w, bool x, const String&)> map_section_hook;
VirtualAddress entry() const { return m_image.entry(); }
#endif
char* symbol_ptr(const char* name);

View file

@ -84,21 +84,21 @@ dword BXVGADevice::find_framebuffer_address()
return framebuffer_address;
}
KResultOr<Region*> BXVGADevice::mmap(Process& process, FileDescription&, LinearAddress preferred_laddr, size_t offset, size_t size, int prot)
KResultOr<Region*> BXVGADevice::mmap(Process& process, FileDescription&, VirtualAddress preferred_vaddr, size_t offset, size_t size, int prot)
{
ASSERT(offset == 0);
ASSERT(size == framebuffer_size_in_bytes());
auto vmo = VMObject::create_for_physical_range(framebuffer_address(), framebuffer_size_in_bytes());
auto* region = process.allocate_region_with_vmo(
preferred_laddr,
preferred_vaddr,
framebuffer_size_in_bytes(),
move(vmo),
0,
"BXVGA Framebuffer",
prot);
kprintf("BXVGA: %s(%u) created Region{%p} with size %u for framebuffer P%x with laddr L%x\n",
kprintf("BXVGA: %s(%u) created Region{%p} with size %u for framebuffer P%x with vaddr L%x\n",
process.name().characters(), process.pid(),
region, region->size(), framebuffer_address().as_ptr(), region->laddr().get());
region, region->size(), framebuffer_address().as_ptr(), region->vaddr().get());
ASSERT(region);
return region;
}

View file

@ -18,7 +18,7 @@ public:
void set_y_offset(int);
virtual int ioctl(FileDescription&, unsigned request, unsigned arg) override;
virtual KResultOr<Region*> mmap(Process&, FileDescription&, LinearAddress preferred_laddr, size_t offset, size_t, int prot) override;
virtual KResultOr<Region*> mmap(Process&, FileDescription&, VirtualAddress preferred_vaddr, size_t offset, size_t, int prot) override;
size_t framebuffer_size_in_bytes() const { return m_framebuffer_size.area() * sizeof(dword) * 2; }
Size framebuffer_size() const { return m_framebuffer_size; }

View file

@ -1,7 +1,7 @@
#pragma once
#include <Kernel/Devices/Device.h>
#include <Kernel/LinearAddress.h>
#include <Kernel/VirtualAddress.h>
class BlockDevice : public Device {
public:

View file

@ -24,7 +24,7 @@ int File::ioctl(FileDescription&, unsigned, unsigned)
return -ENOTTY;
}
KResultOr<Region*> File::mmap(Process&, FileDescription&, LinearAddress, size_t, size_t, int)
KResultOr<Region*> File::mmap(Process&, FileDescription&, VirtualAddress, size_t, size_t, int)
{
return KResult(-ENODEV);
}

View file

@ -5,7 +5,7 @@
#include <AK/Retained.h>
#include <AK/Types.h>
#include <Kernel/KResult.h>
#include <Kernel/LinearAddress.h>
#include <Kernel/VirtualAddress.h>
#include <Kernel/UnixTypes.h>
class FileDescription;
@ -52,7 +52,7 @@ public:
virtual ssize_t read(FileDescription&, byte*, ssize_t) = 0;
virtual ssize_t write(FileDescription&, const byte*, ssize_t) = 0;
virtual int ioctl(FileDescription&, unsigned request, unsigned arg);
virtual KResultOr<Region*> mmap(Process&, FileDescription&, LinearAddress preferred_laddr, size_t offset, size_t size, int prot);
virtual KResultOr<Region*> mmap(Process&, FileDescription&, VirtualAddress preferred_vaddr, size_t offset, size_t size, int prot);
virtual String absolute_path(const FileDescription&) const = 0;

View file

@ -258,9 +258,9 @@ InodeMetadata FileDescription::metadata() const
return {};
}
KResultOr<Region*> FileDescription::mmap(Process& process, LinearAddress laddr, size_t offset, size_t size, int prot)
KResultOr<Region*> FileDescription::mmap(Process& process, VirtualAddress vaddr, size_t offset, size_t size, int prot)
{
return m_file->mmap(process, *this, laddr, offset, size, prot);
return m_file->mmap(process, *this, vaddr, offset, size, prot);
}
KResult FileDescription::truncate(off_t length)

View file

@ -8,7 +8,7 @@
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/FileSystem/InodeMetadata.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/LinearAddress.h>
#include <Kernel/VirtualAddress.h>
#include <Kernel/Net/Socket.h>
class File;
@ -67,7 +67,7 @@ public:
Custody* custody() { return m_custody.ptr(); }
const Custody* custody() const { return m_custody.ptr(); }
KResultOr<Region*> mmap(Process&, LinearAddress, size_t offset, size_t, int prot);
KResultOr<Region*> mmap(Process&, VirtualAddress, size_t offset, size_t, int prot);
bool is_blocking() const { return m_is_blocking; }
void set_blocking(bool b) { m_is_blocking = b; }

View file

@ -23,12 +23,12 @@ ssize_t InodeFile::write(FileDescription& descriptor, const byte* data, ssize_t
return m_inode->write_bytes(descriptor.offset(), count, data, &descriptor);
}
KResultOr<Region*> InodeFile::mmap(Process& process, FileDescription& descriptor, LinearAddress preferred_laddr, size_t offset, size_t size, int prot)
KResultOr<Region*> InodeFile::mmap(Process& process, FileDescription& descriptor, VirtualAddress preferred_vaddr, size_t offset, size_t size, int prot)
{
ASSERT(offset == 0);
// FIXME: If PROT_EXEC, check that the underlying file system isn't mounted noexec.
InterruptDisabler disabler;
auto* region = process.allocate_file_backed_region(preferred_laddr, size, inode(), descriptor.absolute_path(), prot);
auto* region = process.allocate_file_backed_region(preferred_vaddr, size, inode(), descriptor.absolute_path(), prot);
if (!region)
return KResult(-ENOMEM);
return region;

View file

@ -21,7 +21,7 @@ public:
virtual ssize_t read(FileDescription&, byte*, ssize_t) override;
virtual ssize_t write(FileDescription&, const byte*, ssize_t) override;
virtual KResultOr<Region*> mmap(Process&, FileDescription&, LinearAddress preferred_laddr, size_t offset, size_t size, int prot) override;
virtual KResultOr<Region*> mmap(Process&, FileDescription&, VirtualAddress preferred_vaddr, size_t offset, size_t size, int prot) override;
virtual String absolute_path(const FileDescription&) const override;

View file

@ -227,8 +227,8 @@ ByteBuffer procfs$pid_vm(InodeIdentifier identifier)
if (region->is_writable())
flags_builder.append('W');
builder.appendf("%x -- %x %x %x % 4s %s\n",
region->laddr().get(),
region->laddr().offset(region->size() - 1).get(),
region->vaddr().get(),
region->vaddr().offset(region->size() - 1).get(),
region->size(),
region->amount_resident(),
flags_builder.to_string().characters(),
@ -263,8 +263,8 @@ ByteBuffer procfs$pid_vmo(InodeIdentifier identifier)
builder.appendf("BEGIN END SIZE NAME\n");
for (auto& region : process.regions()) {
builder.appendf("%x -- %x %x %s\n",
region->laddr().get(),
region->laddr().offset(region->size() - 1).get(),
region->vaddr().get(),
region->vaddr().offset(region->size() - 1).get(),
region->size(),
region->name().characters());
builder.appendf("VMO: %s \"%s\" @ %x(%u)\n",
@ -300,7 +300,7 @@ ByteBuffer procfs$pid_stack(InodeIdentifier identifier)
builder.appendf("Thread %d:\n", thread.tid());
Vector<RecognizedSymbol, 64> recognized_symbols;
recognized_symbols.append({ thread.tss().eip, ksymbolicate(thread.tss().eip) });
for (dword* stack_ptr = (dword*)thread.frame_ptr(); process.validate_read_from_kernel(LinearAddress((dword)stack_ptr)); stack_ptr = (dword*)*stack_ptr) {
for (dword* stack_ptr = (dword*)thread.frame_ptr(); process.validate_read_from_kernel(VirtualAddress((dword)stack_ptr)); stack_ptr = (dword*)*stack_ptr) {
dword retaddr = stack_ptr[1];
recognized_symbols.append({ retaddr, ksymbolicate(retaddr) });
}

View file

@ -94,12 +94,12 @@ static void load_ksyms_from_data(const ByteBuffer& buffer)
RecognizedSymbol recognized_symbols[max_recognized_symbol_count];
int recognized_symbol_count = 0;
if (use_ksyms) {
for (dword* stack_ptr = (dword*)ebp; current->process().validate_read_from_kernel(LinearAddress((dword)stack_ptr)); stack_ptr = (dword*)*stack_ptr) {
for (dword* stack_ptr = (dword*)ebp; current->process().validate_read_from_kernel(VirtualAddress((dword)stack_ptr)); stack_ptr = (dword*)*stack_ptr) {
dword retaddr = stack_ptr[1];
recognized_symbols[recognized_symbol_count++] = { retaddr, ksymbolicate(retaddr) };
}
} else {
for (dword* stack_ptr = (dword*)ebp; current->process().validate_read_from_kernel(LinearAddress((dword)stack_ptr)); stack_ptr = (dword*)*stack_ptr) {
for (dword* stack_ptr = (dword*)ebp; current->process().validate_read_from_kernel(VirtualAddress((dword)stack_ptr)); stack_ptr = (dword*)*stack_ptr) {
dword retaddr = stack_ptr[1];
dbgprintf("%x (next: %x)\n", retaddr, stack_ptr ? (dword*)*stack_ptr : 0);
}

View file

@ -1,39 +0,0 @@
#pragma once
#include <AK/Types.h>
class LinearAddress {
public:
LinearAddress() {}
explicit LinearAddress(dword address)
: m_address(address)
{
}
bool is_null() const { return m_address == 0; }
LinearAddress offset(dword o) const { return LinearAddress(m_address + o); }
dword get() const { return m_address; }
void set(dword address) { m_address = address; }
void mask(dword m) { m_address &= m; }
bool operator<=(const LinearAddress& other) const { return m_address <= other.m_address; }
bool operator>=(const LinearAddress& other) const { return m_address >= other.m_address; }
bool operator>(const LinearAddress& other) const { return m_address > other.m_address; }
bool operator<(const LinearAddress& other) const { return m_address < other.m_address; }
bool operator==(const LinearAddress& other) const { return m_address == other.m_address; }
bool operator!=(const LinearAddress& other) const { return m_address != other.m_address; }
byte* as_ptr() { return reinterpret_cast<byte*>(m_address); }
const byte* as_ptr() const { return reinterpret_cast<const byte*>(m_address); }
dword page_base() const { return m_address & 0xfffff000; }
private:
dword m_address { 0 };
};
inline LinearAddress operator-(const LinearAddress& a, const LinearAddress& b)
{
return LinearAddress(a.get() - b.get());
}

View file

@ -112,11 +112,11 @@ E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address pci_address, byte irq)
enable_bus_mastering(m_pci_address);
m_mmio_base = PhysicalAddress(PCI::get_BAR0(m_pci_address));
MM.map_for_kernel(LinearAddress(m_mmio_base.get()), m_mmio_base);
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(4096).get()), m_mmio_base.offset(4096));
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(8192).get()), m_mmio_base.offset(8192));
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(12288).get()), m_mmio_base.offset(12288));
MM.map_for_kernel(LinearAddress(m_mmio_base.offset(16384).get()), m_mmio_base.offset(16384));
MM.map_for_kernel(VirtualAddress(m_mmio_base.get()), m_mmio_base);
MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(4096).get()), m_mmio_base.offset(4096));
MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(8192).get()), m_mmio_base.offset(8192));
MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(12288).get()), m_mmio_base.offset(12288));
MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(16384).get()), m_mmio_base.offset(16384));
m_use_mmio = true;
m_io_base = PCI::get_BAR1(m_pci_address) & ~1;
m_interrupt_line = PCI::get_interrupt_line(m_pci_address);

View file

@ -72,13 +72,13 @@ bool Process::in_group(gid_t gid) const
return m_gids.contains(gid);
}
Range Process::allocate_range(LinearAddress laddr, size_t size)
Range Process::allocate_range(VirtualAddress vaddr, size_t size)
{
laddr.mask(PAGE_MASK);
vaddr.mask(PAGE_MASK);
size = PAGE_ROUND_UP(size);
if (laddr.is_null())
if (vaddr.is_null())
return page_directory().range_allocator().allocate_anywhere(size);
return page_directory().range_allocator().allocate_specific(laddr, size);
return page_directory().range_allocator().allocate_specific(vaddr, size);
}
static unsigned prot_to_region_access_flags(int prot)
@ -93,9 +93,9 @@ static unsigned prot_to_region_access_flags(int prot)
return access;
}
Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, int prot, bool commit)
Region* Process::allocate_region(VirtualAddress vaddr, size_t size, String&& name, int prot, bool commit)
{
auto range = allocate_range(laddr, size);
auto range = allocate_range(vaddr, size);
if (!range.is_valid())
return nullptr;
m_regions.append(adopt(*new Region(range, move(name), prot_to_region_access_flags(prot))));
@ -105,9 +105,9 @@ Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name
return m_regions.last().ptr();
}
Region* Process::allocate_file_backed_region(LinearAddress laddr, size_t size, RetainPtr<Inode>&& inode, String&& name, int prot)
Region* Process::allocate_file_backed_region(VirtualAddress vaddr, size_t size, RetainPtr<Inode>&& inode, String&& name, int prot)
{
auto range = allocate_range(laddr, size);
auto range = allocate_range(vaddr, size);
if (!range.is_valid())
return nullptr;
m_regions.append(adopt(*new Region(range, move(inode), move(name), prot_to_region_access_flags(prot))));
@ -115,9 +115,9 @@ Region* Process::allocate_file_backed_region(LinearAddress laddr, size_t size, R
return m_regions.last().ptr();
}
Region* Process::allocate_region_with_vmo(LinearAddress laddr, size_t size, Retained<VMObject>&& vmo, size_t offset_in_vmo, String&& name, int prot)
Region* Process::allocate_region_with_vmo(VirtualAddress vaddr, size_t size, Retained<VMObject>&& vmo, size_t offset_in_vmo, String&& name, int prot)
{
auto range = allocate_range(laddr, size);
auto range = allocate_range(vaddr, size);
if (!range.is_valid())
return nullptr;
offset_in_vmo &= PAGE_MASK;
@ -131,7 +131,7 @@ bool Process::deallocate_region(Region& region)
InterruptDisabler disabler;
for (int i = 0; i < m_regions.size(); ++i) {
if (m_regions[i] == &region) {
page_directory().range_allocator().deallocate({ region.laddr(), region.size() });
page_directory().range_allocator().deallocate({ region.vaddr(), region.size() });
MM.unmap_region(region);
m_regions.remove(i);
return true;
@ -140,11 +140,11 @@ bool Process::deallocate_region(Region& region)
return false;
}
Region* Process::region_from_range(LinearAddress laddr, size_t size)
Region* Process::region_from_range(VirtualAddress vaddr, size_t size)
{
size = PAGE_ROUND_UP(size);
for (auto& region : m_regions) {
if (region->laddr() == laddr && region->size() == size)
if (region->vaddr() == vaddr && region->size() == size)
return region.ptr();
}
return nullptr;
@ -154,7 +154,7 @@ int Process::sys$set_mmap_name(void* addr, size_t size, const char* name)
{
if (!validate_read_str(name))
return -EFAULT;
auto* region = region_from_range(LinearAddress((dword)addr), size);
auto* region = region_from_range(VirtualAddress((dword)addr), size);
if (!region)
return -EINVAL;
region->set_name(String(name));
@ -179,21 +179,21 @@ void* Process::sys$mmap(const Syscall::SC_mmap_params* params)
if ((dword)addr & ~PAGE_MASK)
return (void*)-EINVAL;
if (flags & MAP_ANONYMOUS) {
auto* region = allocate_region(LinearAddress((dword)addr), size, "mmap", prot, false);
auto* region = allocate_region(VirtualAddress((dword)addr), size, "mmap", prot, false);
if (!region)
return (void*)-ENOMEM;
if (flags & MAP_SHARED)
region->set_shared(true);
if (name)
region->set_name(name);
return region->laddr().as_ptr();
return region->vaddr().as_ptr();
}
if (offset & ~PAGE_MASK)
return (void*)-EINVAL;
auto* descriptor = file_description(fd);
if (!descriptor)
return (void*)-EBADF;
auto region_or_error = descriptor->mmap(*this, LinearAddress((dword)addr), offset, size, prot);
auto region_or_error = descriptor->mmap(*this, VirtualAddress((dword)addr), offset, size, prot);
if (region_or_error.is_error())
return (void*)(int)region_or_error.error();
auto region = region_or_error.value();
@ -201,12 +201,12 @@ void* Process::sys$mmap(const Syscall::SC_mmap_params* params)
region->set_shared(true);
if (name)
region->set_name(name);
return region->laddr().as_ptr();
return region->vaddr().as_ptr();
}
int Process::sys$munmap(void* addr, size_t size)
{
auto* region = region_from_range(LinearAddress((dword)addr), size);
auto* region = region_from_range(VirtualAddress((dword)addr), size);
if (!region)
return -EINVAL;
if (!deallocate_region(*region))
@ -239,7 +239,7 @@ Process* Process::fork(RegisterDump& regs)
for (auto& region : m_regions) {
#ifdef FORK_DEBUG
dbgprintf("fork: cloning Region{%p} \"%s\" L%x\n", region.ptr(), region->name().characters(), region->laddr().get());
dbgprintf("fork: cloning Region{%p} \"%s\" L%x\n", region.ptr(), region->name().characters(), region->vaddr().get());
#endif
auto cloned_region = region->clone();
child->m_regions.append(move(cloned_region));
@ -334,7 +334,7 @@ int Process::do_exec(String path, Vector<String> arguments, Vector<String> envir
auto vmo = VMObject::create_file_backed(descriptor->inode());
vmo->set_name(descriptor->absolute_path());
RetainPtr<Region> region = allocate_region_with_vmo(LinearAddress(), metadata.size, vmo.copy_ref(), 0, vmo->name(), PROT_READ);
RetainPtr<Region> region = allocate_region_with_vmo(VirtualAddress(), metadata.size, vmo.copy_ref(), 0, vmo->name(), PROT_READ);
ASSERT(region);
if (this != &current->process()) {
@ -347,8 +347,8 @@ int Process::do_exec(String path, Vector<String> arguments, Vector<String> envir
// Okay, here comes the sleight of hand, pay close attention..
auto old_regions = move(m_regions);
m_regions.append(*region);
loader = make<ELFLoader>(region->laddr().as_ptr());
loader->map_section_hook = [&](LinearAddress laddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, bool is_executable, const String& name) {
loader = make<ELFLoader>(region->vaddr().as_ptr());
loader->map_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, bool is_executable, const String& name) {
ASSERT(size);
ASSERT(alignment == PAGE_SIZE);
int prot = 0;
@ -358,10 +358,10 @@ int Process::do_exec(String path, Vector<String> arguments, Vector<String> envir
prot |= PROT_WRITE;
if (is_executable)
prot |= PROT_EXEC;
(void)allocate_region_with_vmo(laddr, size, vmo.copy_ref(), offset_in_image, String(name), prot);
return laddr.as_ptr();
(void)allocate_region_with_vmo(vaddr, size, vmo.copy_ref(), offset_in_image, String(name), prot);
return vaddr.as_ptr();
};
loader->alloc_section_hook = [&](LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) {
loader->alloc_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) {
ASSERT(size);
ASSERT(alignment == PAGE_SIZE);
int prot = 0;
@ -369,8 +369,8 @@ int Process::do_exec(String path, Vector<String> arguments, Vector<String> envir
prot |= PROT_READ;
if (is_writable)
prot |= PROT_WRITE;
(void)allocate_region(laddr, size, String(name), prot);
return laddr.as_ptr();
(void)allocate_region(vaddr, size, String(name), prot);
return vaddr.as_ptr();
};
bool success = loader->load();
if (!success || !loader->entry().get()) {
@ -649,8 +649,8 @@ void Process::dump_regions()
kprintf("BEGIN END SIZE NAME\n");
for (auto& region : m_regions) {
kprintf("%x -- %x %x %s\n",
region->laddr().get(),
region->laddr().offset(region->size() - 1).get(),
region->vaddr().get(),
region->vaddr().offset(region->size() - 1).get(),
region->size(),
region->name().characters());
}
@ -677,8 +677,8 @@ void Process::create_signal_trampolines_if_needed()
return;
// FIXME: This should be a global trampoline shared by all processes, not one created per process!
// FIXME: Remap as read-only after setup.
auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "Signal trampolines", PROT_READ | PROT_WRITE | PROT_EXEC);
m_return_to_ring3_from_signal_trampoline = region->laddr();
auto* region = allocate_region(VirtualAddress(), PAGE_SIZE, "Signal trampolines", PROT_READ | PROT_WRITE | PROT_EXEC);
m_return_to_ring3_from_signal_trampoline = region->vaddr();
byte* code_ptr = m_return_to_ring3_from_signal_trampoline.as_ptr();
*code_ptr++ = 0x58; // pop eax (Argument to signal handler (ignored here))
*code_ptr++ = 0x5a; // pop edx (Original signal mask to restore)
@ -698,7 +698,7 @@ void Process::create_signal_trampolines_if_needed()
*code_ptr++ = 0x0f; // ud2
*code_ptr++ = 0x0b;
m_return_to_ring0_from_signal_trampoline = LinearAddress((dword)code_ptr);
m_return_to_ring0_from_signal_trampoline = VirtualAddress((dword)code_ptr);
*code_ptr++ = 0x58; // pop eax (Argument to signal handler (ignored here))
*code_ptr++ = 0x5a; // pop edx (Original signal mask to restore)
*code_ptr++ = 0xb8; // mov eax, <dword>
@ -1448,7 +1448,7 @@ enum class KernelMemoryCheckResult
AccessDenied
};
static KernelMemoryCheckResult check_kernel_memory_access(LinearAddress laddr, bool is_write)
static KernelMemoryCheckResult check_kernel_memory_access(VirtualAddress vaddr, bool is_write)
{
auto& sections = multiboot_info_ptr->u.elf_sec;
@ -1457,7 +1457,7 @@ static KernelMemoryCheckResult check_kernel_memory_access(LinearAddress laddr, b
auto& segment = kernel_program_headers[i];
if (segment.p_type != PT_LOAD || !segment.p_vaddr || !segment.p_memsz)
continue;
if (laddr.get() < segment.p_vaddr || laddr.get() > (segment.p_vaddr + segment.p_memsz))
if (vaddr.get() < segment.p_vaddr || vaddr.get() > (segment.p_vaddr + segment.p_memsz))
continue;
if (is_write && !(kernel_program_headers[i].p_flags & PF_W))
return KernelMemoryCheckResult::AccessDenied;
@ -1468,20 +1468,20 @@ static KernelMemoryCheckResult check_kernel_memory_access(LinearAddress laddr, b
return KernelMemoryCheckResult::NotInsideKernelMemory;
}
bool Process::validate_read_from_kernel(LinearAddress laddr) const
bool Process::validate_read_from_kernel(VirtualAddress vaddr) const
{
if (laddr.is_null())
if (vaddr.is_null())
return false;
// We check extra carefully here since the first 4MB of the address space is identity-mapped.
// This code allows access outside of the known used address ranges to get caught.
auto kmc_result = check_kernel_memory_access(laddr, false);
auto kmc_result = check_kernel_memory_access(vaddr, false);
if (kmc_result == KernelMemoryCheckResult::AccessGranted)
return true;
if (kmc_result == KernelMemoryCheckResult::AccessDenied)
return false;
if (is_kmalloc_address(laddr.as_ptr()))
if (is_kmalloc_address(vaddr.as_ptr()))
return true;
return validate_read(laddr.as_ptr(), 1);
return validate_read(vaddr.as_ptr(), 1);
}
bool Process::validate_read_str(const char* str)
@ -1494,8 +1494,8 @@ bool Process::validate_read_str(const char* str)
bool Process::validate_read(const void* address, ssize_t size) const
{
ASSERT(size >= 0);
LinearAddress first_address((dword)address);
LinearAddress last_address = first_address.offset(size - 1);
VirtualAddress first_address((dword)address);
VirtualAddress last_address = first_address.offset(size - 1);
if (is_ring0()) {
auto kmc_result = check_kernel_memory_access(first_address, false);
if (kmc_result == KernelMemoryCheckResult::AccessGranted)
@ -1518,8 +1518,8 @@ bool Process::validate_read(const void* address, ssize_t size) const
bool Process::validate_write(void* address, ssize_t size) const
{
ASSERT(size >= 0);
LinearAddress first_address((dword)address);
LinearAddress last_address = first_address.offset(size - 1);
VirtualAddress first_address((dword)address);
VirtualAddress last_address = first_address.offset(size - 1);
if (is_ring0()) {
if (is_kmalloc_address(address))
return true;
@ -1698,7 +1698,7 @@ int Process::sys$sigaction(int signum, const sigaction* act, sigaction* old_act)
old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get();
}
action.flags = act->sa_flags;
action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction);
action.handler_or_sigaction = VirtualAddress((dword)act->sa_sigaction);
return 0;
}
@ -2363,17 +2363,17 @@ struct SharedBuffer {
if (m_pid1 == process.pid()) {
++m_pid1_retain_count;
if (!m_pid1_region) {
m_pid1_region = process.allocate_region_with_vmo(LinearAddress(), size(), m_vmo.copy_ref(), 0, "SharedBuffer", PROT_READ | (m_pid1_writable ? PROT_WRITE : 0));
m_pid1_region = process.allocate_region_with_vmo(VirtualAddress(), size(), m_vmo.copy_ref(), 0, "SharedBuffer", PROT_READ | (m_pid1_writable ? PROT_WRITE : 0));
m_pid1_region->set_shared(true);
}
return m_pid1_region->laddr().as_ptr();
return m_pid1_region->vaddr().as_ptr();
} else if (m_pid2 == process.pid()) {
++m_pid2_retain_count;
if (!m_pid2_region) {
m_pid2_region = process.allocate_region_with_vmo(LinearAddress(), size(), m_vmo.copy_ref(), 0, "SharedBuffer", PROT_READ | (m_pid2_writable ? PROT_WRITE : 0));
m_pid2_region = process.allocate_region_with_vmo(VirtualAddress(), size(), m_vmo.copy_ref(), 0, "SharedBuffer", PROT_READ | (m_pid2_writable ? PROT_WRITE : 0));
m_pid2_region->set_shared(true);
}
return m_pid2_region->laddr().as_ptr();
return m_pid2_region->vaddr().as_ptr();
}
return nullptr;
}
@ -2499,9 +2499,9 @@ int Process::sys$create_shared_buffer(pid_t peer_pid, int size, void** buffer)
auto shared_buffer = make<SharedBuffer>(m_pid, peer_pid, size);
shared_buffer->m_shared_buffer_id = shared_buffer_id;
ASSERT(shared_buffer->size() >= size);
shared_buffer->m_pid1_region = allocate_region_with_vmo(LinearAddress(), shared_buffer->size(), shared_buffer->m_vmo.copy_ref(), 0, "SharedBuffer", PROT_READ | PROT_WRITE);
shared_buffer->m_pid1_region = allocate_region_with_vmo(VirtualAddress(), shared_buffer->size(), shared_buffer->m_vmo.copy_ref(), 0, "SharedBuffer", PROT_READ | PROT_WRITE);
shared_buffer->m_pid1_region->set_shared(true);
*buffer = shared_buffer->m_pid1_region->laddr().as_ptr();
*buffer = shared_buffer->m_pid1_region->vaddr().as_ptr();
#ifdef SHARED_BUFFER_DEBUG
kprintf("%s(%u): Created shared buffer %d (%u bytes, vmo is %u) for sharing with %d\n", name().characters(), pid(), shared_buffer_id, size, shared_buffer->size(), peer_pid);
#endif

View file

@ -225,7 +225,7 @@ public:
dword m_ticks_in_user_for_dead_children { 0 };
dword m_ticks_in_kernel_for_dead_children { 0 };
bool validate_read_from_kernel(LinearAddress) const;
bool validate_read_from_kernel(VirtualAddress) const;
bool validate_read(const void*, ssize_t) const;
bool validate_write(void*, ssize_t) const;
@ -250,9 +250,9 @@ public:
bool is_superuser() const { return m_euid == 0; }
Region* allocate_region_with_vmo(LinearAddress, size_t, Retained<VMObject>&&, size_t offset_in_vmo, String&& name, int prot);
Region* allocate_file_backed_region(LinearAddress, size_t, RetainPtr<Inode>&&, String&& name, int prot);
Region* allocate_region(LinearAddress, size_t, String&& name, int prot = PROT_READ | PROT_WRITE, bool commit = true);
Region* allocate_region_with_vmo(VirtualAddress, size_t, Retained<VMObject>&&, size_t offset_in_vmo, String&& name, int prot);
Region* allocate_file_backed_region(VirtualAddress, size_t, RetainPtr<Inode>&&, String&& name, int prot);
Region* allocate_region(VirtualAddress, size_t, String&& name, int prot = PROT_READ | PROT_WRITE, bool commit = true);
bool deallocate_region(Region& region);
void set_being_inspected(bool b) { m_being_inspected = b; }
@ -277,7 +277,7 @@ private:
Process(String&& name, uid_t, gid_t, pid_t ppid, RingLevel, RetainPtr<Custody>&& cwd = nullptr, RetainPtr<Custody>&& executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
Range allocate_range(LinearAddress, size_t);
Range allocate_range(VirtualAddress, size_t);
int do_exec(String path, Vector<String> arguments, Vector<String> environment);
ssize_t do_write(FileDescription&, const byte*, int data_size);
@ -326,12 +326,12 @@ private:
TTY* m_tty { nullptr };
Region* region_from_range(LinearAddress, size_t);
Region* region_from_range(VirtualAddress, size_t);
Vector<Retained<Region>> m_regions;
LinearAddress m_return_to_ring3_from_signal_trampoline;
LinearAddress m_return_to_ring0_from_signal_trampoline;
VirtualAddress m_return_to_ring3_from_signal_trampoline;
VirtualAddress m_return_to_ring0_from_signal_trampoline;
pid_t m_ppid { 0 };
mode_t m_umask { 022 };

View file

@ -89,9 +89,9 @@ int SharedMemory::write(FileDescription&, const byte* data, int data_size)
ASSERT_NOT_REACHED();
}
KResultOr<Region*> SharedMemory::mmap(Process& process, FileDescription&, LinearAddress laddr, size_t offset, size_t size, int prot)
KResultOr<Region*> SharedMemory::mmap(Process& process, FileDescription&, VirtualAddress vaddr, size_t offset, size_t size, int prot)
{
if (!vmo())
return KResult(-ENODEV);
return process.allocate_region_with_vmo(laddr, size, *vmo(), offset, name(), prot);
return process.allocate_region_with_vmo(vaddr, size, *vmo(), offset, name(), prot);
}

View file

@ -31,7 +31,7 @@ private:
virtual String absolute_path(const FileDescription&) const override;
virtual const char* class_name() const override { return "SharedMemory"; }
virtual bool is_shared_memory() const override { return true; }
virtual KResultOr<Region*> mmap(Process&, FileDescription&, LinearAddress, size_t offset, size_t size, int prot) override;
virtual KResultOr<Region*> mmap(Process&, FileDescription&, VirtualAddress, size_t offset, size_t size, int prot) override;
SharedMemory(const String& name, uid_t, gid_t, mode_t);

View file

@ -63,9 +63,9 @@ Thread::Thread(Process& process)
} else {
// Ring3 processes need a separate stack for Ring0.
m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
m_kernel_stack_base = m_kernel_stack_region->laddr().get();
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
m_tss.ss0 = 0x10;
m_tss.esp0 = m_kernel_stack_region->laddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
m_tss.esp0 = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
}
// HACK: Ring2 SS in the TSS is the current PID.
@ -332,8 +332,8 @@ ShouldUnblockThread Thread::dispatch_signal(byte signal)
if (signal == SIGCONT && state() == Stopped)
set_state(Runnable);
auto handler_laddr = action.handler_or_sigaction;
if (handler_laddr.is_null()) {
auto handler_vaddr = action.handler_or_sigaction;
if (handler_vaddr.is_null()) {
switch (default_signal_action(signal)) {
case DefaultSignalAction::Stop:
set_state(Stopped);
@ -352,7 +352,7 @@ ShouldUnblockThread Thread::dispatch_signal(byte signal)
ASSERT_NOT_REACHED();
}
if (handler_laddr.as_ptr() == SIG_IGN) {
if (handler_vaddr.as_ptr() == SIG_IGN) {
#ifdef SIGNAL_DEBUG
kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
#endif
@ -389,15 +389,15 @@ ShouldUnblockThread Thread::dispatch_signal(byte signal)
#endif
if (!m_signal_stack_user_region) {
m_signal_stack_user_region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, String::format("User Signal Stack (Thread %d)", m_tid));
m_signal_stack_user_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("User Signal Stack (Thread %d)", m_tid));
ASSERT(m_signal_stack_user_region);
}
if (!m_kernel_stack_for_signal_handler_region)
m_kernel_stack_for_signal_handler_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Signal Stack (Thread %d)", m_tid));
m_tss.ss = 0x23;
m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get();
m_tss.esp = m_signal_stack_user_region->vaddr().offset(default_userspace_stack_size).get();
m_tss.ss0 = 0x10;
m_tss.esp0 = m_kernel_stack_for_signal_handler_region->laddr().offset(default_kernel_stack_size).get();
m_tss.esp0 = m_kernel_stack_for_signal_handler_region->vaddr().offset(default_kernel_stack_size).get();
push_value_on_stack(0);
} else {
@ -427,7 +427,7 @@ ShouldUnblockThread Thread::dispatch_signal(byte signal)
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = 0x23;
m_tss.eip = handler_laddr.get();
m_tss.eip = handler_vaddr.get();
// FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
push_value_on_stack(signal);
@ -452,8 +452,8 @@ void Thread::set_default_signal_dispositions()
{
// FIXME: Set up all the right default actions. See signal(7).
memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
m_signal_action_data[SIGWINCH].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((dword)SIG_IGN);
m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((dword)SIG_IGN);
}
void Thread::push_value_on_stack(dword value)
@ -465,11 +465,11 @@ void Thread::push_value_on_stack(dword value)
void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
{
auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "Stack (Main thread)");
auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)");
ASSERT(region);
m_tss.esp = region->laddr().offset(default_userspace_stack_size).get();
m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
char* stack_base = (char*)region->laddr().get();
char* stack_base = (char*)region->vaddr().get();
int argc = arguments.size();
char** argv = (char**)stack_base;
char** env = argv + arguments.size() + 1;
@ -511,9 +511,9 @@ void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vect
void Thread::make_userspace_stack_for_secondary_thread(void* argument)
{
auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()));
ASSERT(region);
m_tss.esp = region->laddr().offset(default_userspace_stack_size).get();
m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();
// NOTE: The stack needs to be 16-byte aligned.
push_value_on_stack((dword)argument);

View file

@ -6,7 +6,7 @@
#include <AK/RetainPtr.h>
#include <AK/Vector.h>
#include <Kernel/KResult.h>
#include <Kernel/LinearAddress.h>
#include <Kernel/VirtualAddress.h>
#include <Kernel/UnixTypes.h>
#include <Kernel/VM/Region.h>
#include <Kernel/i386.h>
@ -24,7 +24,7 @@ enum class ShouldUnblockThread
};
struct SignalActionData {
LinearAddress handler_or_sigaction;
VirtualAddress handler_or_sigaction;
dword mask { 0 };
int flags { 0 };
};
@ -112,7 +112,7 @@ public:
dword ticks_left() const { return m_ticks_left; }
dword kernel_stack_base() const { return m_kernel_stack_base; }
dword kernel_stack_for_signal_handler_base() const { return m_kernel_stack_for_signal_handler_region ? m_kernel_stack_for_signal_handler_region->laddr().get() : 0; }
dword kernel_stack_for_signal_handler_base() const { return m_kernel_stack_for_signal_handler_region ? m_kernel_stack_for_signal_handler_region->vaddr().get() : 0; }
void set_selector(word s) { m_far_ptr.selector = s; }
void set_state(State);

View file

@ -66,14 +66,14 @@ void MemoryManager::initialize_paging()
dbgprintf("MM: Protect against null dereferences\n");
#endif
// Make null dereferences crash.
map_protected(LinearAddress(0), PAGE_SIZE);
map_protected(VirtualAddress(0), PAGE_SIZE);
#ifdef MM_DEBUG
dbgprintf("MM: Identity map bottom 4MB\n");
#endif
// The bottom 4 MB (except for the null page) are identity mapped & supervisor only.
// Every process shares these mappings.
create_identity_mapping(kernel_page_directory(), LinearAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
create_identity_mapping(kernel_page_directory(), VirtualAddress(PAGE_SIZE), (4 * MB) - PAGE_SIZE);
// Basic memory map:
// 0 -> 512 kB Kernel code. Root page directory & PDE 0.
@ -90,7 +90,7 @@ void MemoryManager::initialize_paging()
dbgprintf("MM: 4MB-%uMB available for allocation\n", m_ram_size / 1048576);
for (size_t i = (4 * MB); i < m_ram_size; i += PAGE_SIZE)
m_free_physical_pages.append(PhysicalPage::create_eternal(PhysicalAddress(i), false));
m_quickmap_addr = LinearAddress((1 * MB) - PAGE_SIZE);
m_quickmap_addr = VirtualAddress((1 * MB) - PAGE_SIZE);
#ifdef MM_DEBUG
dbgprintf("MM: Quickmap will use P%x\n", m_quickmap_addr.get());
dbgprintf("MM: Installing page directory\n");
@ -118,12 +118,12 @@ RetainPtr<PhysicalPage> MemoryManager::allocate_page_table(PageDirectory& page_d
return physical_page;
}
void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
{
InterruptDisabler disabler;
// FIXME: ASSERT(laddr is 4KB aligned);
// FIXME: ASSERT(vaddr is 4KB aligned);
for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
auto pte_address = laddr.offset(offset);
auto pte_address = vaddr.offset(offset);
auto pte = ensure_pte(page_directory, pte_address);
pte.set_physical_page_base(0);
pte.set_user_allowed(false);
@ -133,16 +133,16 @@ void MemoryManager::remove_identity_mapping(PageDirectory& page_directory, Linea
}
}
auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress laddr) -> PageTableEntry
auto MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr) -> PageTableEntry
{
ASSERT_INTERRUPTS_DISABLED();
dword page_directory_index = (laddr.get() >> 22) & 0x3ff;
dword page_table_index = (laddr.get() >> 12) & 0x3ff;
dword page_directory_index = (vaddr.get() >> 22) & 0x3ff;
dword page_table_index = (vaddr.get() >> 12) & 0x3ff;
PageDirectoryEntry pde = PageDirectoryEntry(&page_directory.entries()[page_directory_index]);
if (!pde.is_present()) {
#ifdef MM_DEBUG
dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, laddr.get());
dbgprintf("MM: PDE %u not present (requested for L%x), allocating\n", page_directory_index, vaddr.get());
#endif
if (page_directory_index == 0) {
ASSERT(&page_directory == m_kernel_page_directory);
@ -159,7 +159,7 @@ auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress ladd
&page_directory == m_kernel_page_directory ? "Kernel" : "User",
page_directory.cr3(),
page_directory_index,
laddr.get(),
vaddr.get(),
page_table->paddr().get());
#endif
@ -173,12 +173,12 @@ auto MemoryManager::ensure_pte(PageDirectory& page_directory, LinearAddress ladd
return PageTableEntry(&pde.page_table_base()[page_table_index]);
}
void MemoryManager::map_protected(LinearAddress laddr, size_t length)
void MemoryManager::map_protected(VirtualAddress vaddr, size_t length)
{
InterruptDisabler disabler;
// FIXME: ASSERT(linearAddress is 4KB aligned);
for (dword offset = 0; offset < length; offset += PAGE_SIZE) {
auto pte_address = laddr.offset(offset);
auto pte_address = vaddr.offset(offset);
auto pte = ensure_pte(kernel_page_directory(), pte_address);
pte.set_physical_page_base(pte_address.get());
pte.set_user_allowed(false);
@ -188,12 +188,12 @@ void MemoryManager::map_protected(LinearAddress laddr, size_t length)
}
}
void MemoryManager::create_identity_mapping(PageDirectory& page_directory, LinearAddress laddr, size_t size)
void MemoryManager::create_identity_mapping(PageDirectory& page_directory, VirtualAddress vaddr, size_t size)
{
InterruptDisabler disabler;
ASSERT((laddr.get() & ~PAGE_MASK) == 0);
ASSERT((vaddr.get() & ~PAGE_MASK) == 0);
for (dword offset = 0; offset < size; offset += PAGE_SIZE) {
auto pte_address = laddr.offset(offset);
auto pte_address = vaddr.offset(offset);
auto pte = ensure_pte(page_directory, pte_address);
pte.set_physical_page_base(pte_address.get());
pte.set_user_allowed(false);
@ -208,41 +208,41 @@ void MemoryManager::initialize()
s_the = new MemoryManager;
}
Region* MemoryManager::region_from_laddr(Process& process, LinearAddress laddr)
Region* MemoryManager::region_from_vaddr(Process& process, VirtualAddress vaddr)
{
ASSERT_INTERRUPTS_DISABLED();
if (laddr.get() >= 0xc0000000) {
if (vaddr.get() >= 0xc0000000) {
for (auto& region : MM.m_kernel_regions) {
if (region->contains(laddr))
if (region->contains(vaddr))
return region;
}
}
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
for (auto& region : process.m_regions) {
if (region->contains(laddr))
if (region->contains(vaddr))
return region.ptr();
}
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
return nullptr;
}
const Region* MemoryManager::region_from_laddr(const Process& process, LinearAddress laddr)
const Region* MemoryManager::region_from_vaddr(const Process& process, VirtualAddress vaddr)
{
if (laddr.get() >= 0xc0000000) {
if (vaddr.get() >= 0xc0000000) {
for (auto& region : MM.m_kernel_regions) {
if (region->contains(laddr))
if (region->contains(vaddr))
return region;
}
}
// FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure!
for (auto& region : process.m_regions) {
if (region->contains(laddr))
if (region->contains(vaddr))
return region.ptr();
}
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), laddr.get(), process.page_directory().cr3());
dbgprintf("%s(%u) Couldn't find region for L%x (CR3=%x)\n", process.name().characters(), process.pid(), vaddr.get(), process.page_directory().cr3());
return nullptr;
}
@ -290,7 +290,7 @@ bool MemoryManager::copy_on_write(Region& region, unsigned page_index_in_region)
auto physical_page_to_copy = move(vmo.physical_pages()[page_index_in_region]);
auto physical_page = allocate_physical_page(ShouldZeroFill::No);
byte* dest_ptr = quickmap_page(*physical_page);
const byte* src_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
const byte* src_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> COW P%x <- P%x\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
#endif
@ -345,7 +345,7 @@ bool MemoryManager::page_in_from_inode(Region& region, unsigned page_index_in_re
return false;
}
remap_region_page(region, page_index_in_region, true);
byte* dest_ptr = region.laddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
byte* dest_ptr = region.vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
memcpy(dest_ptr, page_buffer, PAGE_SIZE);
return true;
}
@ -355,15 +355,15 @@ PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
ASSERT_INTERRUPTS_DISABLED();
ASSERT(current);
#ifdef PAGE_FAULT_DEBUG
dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.laddr().get());
dbgprintf("MM: handle_page_fault(%w) at L%x\n", fault.code(), fault.vaddr().get());
#endif
ASSERT(fault.laddr() != m_quickmap_addr);
auto* region = region_from_laddr(current->process(), fault.laddr());
ASSERT(fault.vaddr() != m_quickmap_addr);
auto* region = region_from_vaddr(current->process(), fault.vaddr());
if (!region) {
kprintf("NP(error) fault at invalid address L%x\n", fault.laddr().get());
kprintf("NP(error) fault at invalid address L%x\n", fault.vaddr().get());
return PageFaultResponse::ShouldCrash;
}
auto page_index_in_region = region->page_index_from_address(fault.laddr());
auto page_index_in_region = region->page_index_from_address(fault.vaddr());
if (fault.is_not_present()) {
if (region->vmo().inode()) {
#ifdef PAGE_FAULT_DEBUG
@ -387,7 +387,7 @@ PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault)
ASSERT(success);
return PageFaultResponse::Continue;
}
kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.laddr().get());
kprintf("PV(error) fault in Region{%p}[%u] at L%x\n", region, page_index_in_region, fault.vaddr().get());
} else {
ASSERT_NOT_REACHED();
}
@ -462,22 +462,22 @@ void MemoryManager::flush_entire_tlb()
: "%eax", "memory");
}
void MemoryManager::flush_tlb(LinearAddress laddr)
void MemoryManager::flush_tlb(VirtualAddress vaddr)
{
asm volatile("invlpg %0"
:
: "m"(*(char*)laddr.get())
: "m"(*(char*)vaddr.get())
: "memory");
}
void MemoryManager::map_for_kernel(LinearAddress laddr, PhysicalAddress paddr)
void MemoryManager::map_for_kernel(VirtualAddress vaddr, PhysicalAddress paddr)
{
auto pte = ensure_pte(kernel_page_directory(), laddr);
auto pte = ensure_pte(kernel_page_directory(), vaddr);
pte.set_physical_page_base(paddr.get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb(laddr);
flush_tlb(vaddr);
}
byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
@ -485,35 +485,35 @@ byte* MemoryManager::quickmap_page(PhysicalPage& physical_page)
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!m_quickmap_in_use);
m_quickmap_in_use = true;
auto page_laddr = m_quickmap_addr;
auto pte = ensure_pte(kernel_page_directory(), page_laddr);
auto page_vaddr = m_quickmap_addr;
auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
pte.set_physical_page_base(physical_page.paddr().get());
pte.set_present(true);
pte.set_writable(true);
pte.set_user_allowed(false);
flush_tlb(page_laddr);
flush_tlb(page_vaddr);
ASSERT((dword)pte.physical_page_base() == physical_page.paddr().get());
#ifdef MM_DEBUG
dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_laddr, physical_page.paddr().get(), pte.ptr());
dbgprintf("MM: >> quickmap_page L%x => P%x @ PTE=%p\n", page_vaddr, physical_page.paddr().get(), pte.ptr());
#endif
return page_laddr.as_ptr();
return page_vaddr.as_ptr();
}
void MemoryManager::unquickmap_page()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(m_quickmap_in_use);
auto page_laddr = m_quickmap_addr;
auto pte = ensure_pte(kernel_page_directory(), page_laddr);
auto page_vaddr = m_quickmap_addr;
auto pte = ensure_pte(kernel_page_directory(), page_vaddr);
#ifdef MM_DEBUG
auto old_physical_address = pte.physical_page_base();
#endif
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
flush_tlb(page_laddr);
flush_tlb(page_vaddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_laddr, old_physical_address);
dbgprintf("MM: >> unquickmap_page L%x =/> P%x\n", page_vaddr, old_physical_address);
#endif
m_quickmap_in_use = false;
}
@ -522,8 +522,8 @@ void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_reg
{
ASSERT(region.page_directory());
InterruptDisabler disabler;
auto page_laddr = region.laddr().offset(page_index_in_region * PAGE_SIZE);
auto pte = ensure_pte(*region.page_directory(), page_laddr);
auto page_vaddr = region.vaddr().offset(page_index_in_region * PAGE_SIZE);
auto pte = ensure_pte(*region.page_directory(), page_vaddr);
auto& physical_page = region.vmo().physical_pages()[page_index_in_region];
ASSERT(physical_page);
pte.set_physical_page_base(physical_page->paddr().get());
@ -535,9 +535,9 @@ void MemoryManager::remap_region_page(Region& region, unsigned page_index_in_reg
pte.set_cache_disabled(!region.vmo().m_allow_cpu_caching);
pte.set_write_through(!region.vmo().m_allow_cpu_caching);
pte.set_user_allowed(user_allowed);
region.page_directory()->flush(page_laddr);
region.page_directory()->flush(page_vaddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_laddr.get(), physical_page->paddr().get(), physical_page.ptr());
dbgprintf("MM: >> remap_region_page (PD=%x, PTE=P%x) '%s' L%x => P%x (@%p)\n", region.page_directory()->cr3(), pte.ptr(), region.name().characters(), page_vaddr.get(), physical_page->paddr().get(), physical_page.ptr());
#endif
}
@ -545,10 +545,10 @@ void MemoryManager::remap_region(PageDirectory& page_directory, Region& region)
{
InterruptDisabler disabler;
ASSERT(region.page_directory() == &page_directory);
map_region_at_address(page_directory, region, region.laddr(), true);
map_region_at_address(page_directory, region, region.vaddr(), true);
}
void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, LinearAddress laddr, bool user_allowed)
void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region& region, VirtualAddress vaddr, bool user_allowed)
{
InterruptDisabler disabler;
region.set_page_directory(page_directory);
@ -557,8 +557,8 @@ void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region&
dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", region.first_page_index(), region.last_page_index(), vmo.page_count());
#endif
for (size_t i = 0; i < region.page_count(); ++i) {
auto page_laddr = laddr.offset(i * PAGE_SIZE);
auto pte = ensure_pte(page_directory, page_laddr);
auto page_vaddr = vaddr.offset(i * PAGE_SIZE);
auto pte = ensure_pte(page_directory, page_vaddr);
auto& physical_page = vmo.physical_pages()[region.first_page_index() + i];
if (physical_page) {
pte.set_physical_page_base(physical_page->paddr().get());
@ -576,9 +576,9 @@ void MemoryManager::map_region_at_address(PageDirectory& page_directory, Region&
pte.set_writable(region.is_writable());
}
pte.set_user_allowed(user_allowed);
page_directory.flush(page_laddr);
page_directory.flush(page_vaddr);
#ifdef MM_DEBUG
dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_laddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
dbgprintf("MM: >> map_region_at_address (PD=%x) '%s' L%x => P%x (@%p)\n", &page_directory, region.name().characters(), page_vaddr, physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
#endif
}
}
@ -588,16 +588,16 @@ bool MemoryManager::unmap_region(Region& region)
ASSERT(region.page_directory());
InterruptDisabler disabler;
for (size_t i = 0; i < region.page_count(); ++i) {
auto laddr = region.laddr().offset(i * PAGE_SIZE);
auto pte = ensure_pte(*region.page_directory(), laddr);
auto vaddr = region.vaddr().offset(i * PAGE_SIZE);
auto pte = ensure_pte(*region.page_directory(), vaddr);
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
pte.set_user_allowed(false);
region.page_directory()->flush(laddr);
region.page_directory()->flush(vaddr);
#ifdef MM_DEBUG
auto& physical_page = region.vmo().physical_pages()[region.first_page_index() + i];
dbgprintf("MM: >> Unmapped L%x => P%x <<\n", laddr, physical_page ? physical_page->paddr().get() : 0);
dbgprintf("MM: >> Unmapped L%x => P%x <<\n", vaddr, physical_page ? physical_page->paddr().get() : 0);
#endif
}
region.release_page_directory();
@ -606,19 +606,19 @@ bool MemoryManager::unmap_region(Region& region)
bool MemoryManager::map_region(Process& process, Region& region)
{
map_region_at_address(process.page_directory(), region, region.laddr(), true);
map_region_at_address(process.page_directory(), region, region.vaddr(), true);
return true;
}
bool MemoryManager::validate_user_read(const Process& process, LinearAddress laddr) const
bool MemoryManager::validate_user_read(const Process& process, VirtualAddress vaddr) const
{
auto* region = region_from_laddr(process, laddr);
auto* region = region_from_vaddr(process, vaddr);
return region && region->is_readable();
}
bool MemoryManager::validate_user_write(const Process& process, LinearAddress laddr) const
bool MemoryManager::validate_user_write(const Process& process, VirtualAddress vaddr) const
{
auto* region = region_from_laddr(process, laddr);
auto* region = region_from_vaddr(process, vaddr);
return region && region->is_writable();
}
@ -637,7 +637,7 @@ void MemoryManager::unregister_vmo(VMObject& vmo)
void MemoryManager::register_region(Region& region)
{
InterruptDisabler disabler;
if (region.laddr().get() >= 0xc0000000)
if (region.vaddr().get() >= 0xc0000000)
m_kernel_regions.set(&region);
else
m_user_regions.set(&region);
@ -646,7 +646,7 @@ void MemoryManager::register_region(Region& region)
void MemoryManager::unregister_region(Region& region)
{
InterruptDisabler disabler;
if (region.laddr().get() >= 0xc0000000)
if (region.vaddr().get() >= 0xc0000000)
m_kernel_regions.remove(&region);
else
m_user_regions.remove(&region);

View file

@ -12,7 +12,7 @@
#include <AK/Vector.h>
#include <AK/Weakable.h>
#include <Kernel/FileSystem/InodeIdentifier.h>
#include <Kernel/LinearAddress.h>
#include <Kernel/VirtualAddress.h>
#include <Kernel/VM/PhysicalPage.h>
#include <Kernel/VM/Region.h>
#include <Kernel/VM/VMObject.h>
@ -52,8 +52,8 @@ public:
void enter_process_paging_scope(Process&);
bool validate_user_read(const Process&, LinearAddress) const;
bool validate_user_write(const Process&, LinearAddress) const;
bool validate_user_read(const Process&, VirtualAddress) const;
bool validate_user_write(const Process&, VirtualAddress) const;
enum class ShouldZeroFill
{
@ -71,10 +71,10 @@ public:
int user_physical_pages_in_existence() const { return s_user_physical_pages_in_existence; }
int super_physical_pages_in_existence() const { return s_super_physical_pages_in_existence; }
void map_for_kernel(LinearAddress, PhysicalAddress);
void map_for_kernel(VirtualAddress, PhysicalAddress);
RetainPtr<Region> allocate_kernel_region(size_t, String&& name);
void map_region_at_address(PageDirectory&, Region&, LinearAddress, bool user_accessible);
void map_region_at_address(PageDirectory&, Region&, VirtualAddress, bool user_accessible);
private:
MemoryManager();
@ -89,17 +89,17 @@ private:
void initialize_paging();
void flush_entire_tlb();
void flush_tlb(LinearAddress);
void flush_tlb(VirtualAddress);
RetainPtr<PhysicalPage> allocate_page_table(PageDirectory&, unsigned index);
void map_protected(LinearAddress, size_t length);
void map_protected(VirtualAddress, size_t length);
void create_identity_mapping(PageDirectory&, LinearAddress, size_t length);
void remove_identity_mapping(PageDirectory&, LinearAddress, size_t);
void create_identity_mapping(PageDirectory&, VirtualAddress, size_t length);
void remove_identity_mapping(PageDirectory&, VirtualAddress, size_t);
static Region* region_from_laddr(Process&, LinearAddress);
static const Region* region_from_laddr(const Process&, LinearAddress);
static Region* region_from_vaddr(Process&, VirtualAddress);
static const Region* region_from_vaddr(const Process&, VirtualAddress);
bool copy_on_write(Region&, unsigned page_index_in_region);
bool page_in_from_inode(Region&, unsigned page_index_in_region);
@ -215,12 +215,12 @@ private:
static unsigned s_user_physical_pages_in_existence;
static unsigned s_super_physical_pages_in_existence;
PageTableEntry ensure_pte(PageDirectory&, LinearAddress);
PageTableEntry ensure_pte(PageDirectory&, VirtualAddress);
RetainPtr<PageDirectory> m_kernel_page_directory;
dword* m_page_table_zero;
LinearAddress m_quickmap_addr;
VirtualAddress m_quickmap_addr;
Vector<Retained<PhysicalPage>> m_free_physical_pages;
Vector<Retained<PhysicalPage>> m_free_supervisor_physical_pages;

View file

@ -7,13 +7,13 @@ static const dword userspace_range_base = 0x01000000;
static const dword kernelspace_range_base = 0xc0000000;
PageDirectory::PageDirectory(PhysicalAddress paddr)
: m_range_allocator(LinearAddress(0xc0000000), 0x3f000000)
: m_range_allocator(VirtualAddress(0xc0000000), 0x3f000000)
{
m_directory_page = PhysicalPage::create_eternal(paddr, true);
}
PageDirectory::PageDirectory(const RangeAllocator* parent_range_allocator)
: m_range_allocator(parent_range_allocator ? RangeAllocator(*parent_range_allocator) : RangeAllocator(LinearAddress(userspace_range_base), kernelspace_range_base - userspace_range_base))
: m_range_allocator(parent_range_allocator ? RangeAllocator(*parent_range_allocator) : RangeAllocator(VirtualAddress(userspace_range_base), kernelspace_range_base - userspace_range_base))
{
MM.populate_page_directory(*this);
}
@ -25,13 +25,13 @@ PageDirectory::~PageDirectory()
#endif
}
void PageDirectory::flush(LinearAddress laddr)
void PageDirectory::flush(VirtualAddress vaddr)
{
#ifdef MM_DEBUG
dbgprintf("MM: Flush page L%x\n", laddr.get());
dbgprintf("MM: Flush page L%x\n", vaddr.get());
#endif
if (!current)
return;
if (this == &MM.kernel_page_directory() || &current->process().page_directory() == this)
MM.flush_tlb(laddr);
MM.flush_tlb(vaddr);
}

View file

@ -17,7 +17,7 @@ public:
dword cr3() const { return m_directory_page->paddr().get(); }
dword* entries() { return reinterpret_cast<dword*>(cr3()); }
void flush(LinearAddress);
void flush(VirtualAddress);
RangeAllocator& range_allocator() { return m_range_allocator; }

View file

@ -4,7 +4,7 @@
//#define VRA_DEBUG
RangeAllocator::RangeAllocator(LinearAddress base, size_t size)
RangeAllocator::RangeAllocator(VirtualAddress base, size_t size)
{
m_available_ranges.append({ base, size });
#ifdef VRA_DEBUG
@ -82,7 +82,7 @@ Range RangeAllocator::allocate_anywhere(size_t size)
return {};
}
Range RangeAllocator::allocate_specific(LinearAddress base, size_t size)
Range RangeAllocator::allocate_specific(VirtualAddress base, size_t size)
{
Range allocated_range(base, size);
for (int i = 0; i < m_available_ranges.size(); ++i) {

View file

@ -1,33 +1,33 @@
#pragma once
#include <AK/Vector.h>
#include <Kernel/LinearAddress.h>
#include <Kernel/VirtualAddress.h>
class Range {
friend class RangeAllocator;
public:
Range() {}
Range(LinearAddress base, size_t size)
Range(VirtualAddress base, size_t size)
: m_base(base)
, m_size(size)
{
}
LinearAddress base() const { return m_base; }
VirtualAddress base() const { return m_base; }
size_t size() const { return m_size; }
bool is_valid() const { return !m_base.is_null(); }
bool contains(LinearAddress laddr) const { return laddr >= base() && laddr < end(); }
bool contains(VirtualAddress vaddr) const { return vaddr >= base() && vaddr < end(); }
LinearAddress end() const { return m_base.offset(m_size); }
VirtualAddress end() const { return m_base.offset(m_size); }
bool operator==(const Range& other) const
{
return m_base == other.m_base && m_size == other.m_size;
}
bool contains(LinearAddress base, size_t size) const
bool contains(VirtualAddress base, size_t size) const
{
return base >= m_base && base.offset(size) <= end();
}
@ -40,18 +40,18 @@ public:
Vector<Range, 2> carve(const Range&);
private:
LinearAddress m_base;
VirtualAddress m_base;
size_t m_size { 0 };
};
class RangeAllocator {
public:
RangeAllocator(LinearAddress, size_t);
RangeAllocator(VirtualAddress, size_t);
RangeAllocator(const RangeAllocator&);
~RangeAllocator();
Range allocate_anywhere(size_t);
Range allocate_specific(LinearAddress, size_t);
Range allocate_specific(VirtualAddress, size_t);
void deallocate(Range);
void dump() const;

View file

@ -75,7 +75,7 @@ Retained<Region> Region::clone()
current->process().name().characters(),
current->pid(),
m_name.characters(),
laddr().get());
vaddr().get());
#endif
// Create a new region backed by the same VMObject.
return adopt(*new Region(m_range, m_vmo.copy_ref(), m_offset_in_vmo, String(m_name), m_access));
@ -86,7 +86,7 @@ Retained<Region> Region::clone()
current->process().name().characters(),
current->pid(),
m_name.characters(),
laddr().get());
vaddr().get());
#endif
// Set up a COW region. The parent (this) region becomes COW as well!
m_cow_map.fill(true);
@ -98,7 +98,7 @@ int Region::commit()
{
InterruptDisabler disabler;
#ifdef MM_DEBUG
dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), laddr().get());
dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at L%x\n", vmo().page_count(), this, &vmo(), vaddr().get());
#endif
for (size_t i = first_page_index(); i <= last_page_index(); ++i) {
if (!vmo().physical_pages()[i].is_null())

View file

@ -24,7 +24,7 @@ public:
Region(const Range&, RetainPtr<Inode>&&, String&&, byte access);
~Region();
LinearAddress laddr() const { return m_range.base(); }
VirtualAddress vaddr() const { return m_range.base(); }
size_t size() const { return m_range.size(); }
bool is_readable() const { return m_access & Access::Read; }
bool is_writable() const { return m_access & Access::Write; }
@ -41,14 +41,14 @@ public:
Retained<Region> clone();
bool contains(LinearAddress laddr) const
bool contains(VirtualAddress vaddr) const
{
return m_range.contains(laddr);
return m_range.contains(vaddr);
}
unsigned page_index_from_address(LinearAddress laddr) const
unsigned page_index_from_address(VirtualAddress vaddr) const
{
return (laddr - m_range.base()).get() / PAGE_SIZE;
return (vaddr - m_range.base()).get() / PAGE_SIZE;
}
size_t first_page_index() const

39
Kernel/VirtualAddress.h Normal file
View file

@ -0,0 +1,39 @@
#pragma once
#include <AK/Types.h>
class VirtualAddress {
public:
VirtualAddress() {}
explicit VirtualAddress(dword address)
: m_address(address)
{
}
bool is_null() const { return m_address == 0; }
VirtualAddress offset(dword o) const { return VirtualAddress(m_address + o); }
dword get() const { return m_address; }
void set(dword address) { m_address = address; }
void mask(dword m) { m_address &= m; }
bool operator<=(const VirtualAddress& other) const { return m_address <= other.m_address; }
bool operator>=(const VirtualAddress& other) const { return m_address >= other.m_address; }
bool operator>(const VirtualAddress& other) const { return m_address > other.m_address; }
bool operator<(const VirtualAddress& other) const { return m_address < other.m_address; }
bool operator==(const VirtualAddress& other) const { return m_address == other.m_address; }
bool operator!=(const VirtualAddress& other) const { return m_address != other.m_address; }
byte* as_ptr() { return reinterpret_cast<byte*>(m_address); }
const byte* as_ptr() const { return reinterpret_cast<const byte*>(m_address); }
dword page_base() const { return m_address & 0xfffff000; }
private:
dword m_address { 0 };
};
inline VirtualAddress operator-(const VirtualAddress& a, const VirtualAddress& b)
{
return VirtualAddress(a.get() - b.get());
}

View file

@ -275,10 +275,10 @@ void exception_14_handler(RegisterDumpWithExceptionCode& regs)
dump(regs);
#endif
auto response = MM.handle_page_fault(PageFault(regs.exception_code, LinearAddress(faultAddress)));
auto response = MM.handle_page_fault(PageFault(regs.exception_code, VirtualAddress(faultAddress)));
if (response == PageFaultResponse::ShouldCrash) {
kprintf("%s(%u:%u) unrecoverable page fault, %s laddr=%p\n",
kprintf("%s(%u:%u) unrecoverable page fault, %s vaddr=%p\n",
current->process().name().characters(),
current->pid(),
current->tid(),

View file

@ -1,6 +1,6 @@
#pragma once
#include <Kernel/LinearAddress.h>
#include <Kernel/VirtualAddress.h>
#include <Kernel/kstdio.h>
#define PAGE_SIZE 4096
@ -194,13 +194,13 @@ struct PageFaultFlags {
class PageFault {
public:
PageFault(word code, LinearAddress laddr)
PageFault(word code, VirtualAddress vaddr)
: m_code(code)
, m_laddr(laddr)
, m_vaddr(vaddr)
{
}
LinearAddress laddr() const { return m_laddr; }
VirtualAddress vaddr() const { return m_vaddr; }
word code() const { return m_code; }
bool is_not_present() const { return (m_code & 1) == PageFaultFlags::NotPresent; }
@ -213,7 +213,7 @@ public:
private:
word m_code;
LinearAddress m_laddr;
VirtualAddress m_vaddr;
};
struct [[gnu::packed]] RegisterDump