1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-31 06:58:11 +00:00

LibJS: Pass GlobalObject& to native functions and property accessors

More work towards supporting multiple global objects. Native C++ code
now get a GlobalObject& and don't have to ask the Interpreter for it.

I've added macros for declaring and defining native callbacks since
this was pretty tedious and this makes it easier next time we want to
change any of these signatures.
This commit is contained in:
Andreas Kling 2020-06-20 13:55:34 +02:00
parent 4aa98052ca
commit e4add19915
79 changed files with 541 additions and 519 deletions

View file

@ -70,7 +70,7 @@ MathObject::~MathObject()
{
}
Value MathObject::abs(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::abs)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -80,7 +80,7 @@ Value MathObject::abs(Interpreter& interpreter)
return Value(number.as_double() >= 0 ? number.as_double() : -number.as_double());
}
Value MathObject::random(Interpreter&)
Value MathObject::random(Interpreter&, GlobalObject&)
{
#ifdef __serenity__
double r = (double)arc4random() / (double)UINT32_MAX;
@ -90,7 +90,7 @@ Value MathObject::random(Interpreter&)
return Value(r);
}
Value MathObject::sqrt(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::sqrt)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -100,7 +100,7 @@ Value MathObject::sqrt(Interpreter& interpreter)
return Value(::sqrt(number.as_double()));
}
Value MathObject::floor(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::floor)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -110,7 +110,7 @@ Value MathObject::floor(Interpreter& interpreter)
return Value(::floor(number.as_double()));
}
Value MathObject::ceil(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::ceil)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -120,7 +120,7 @@ Value MathObject::ceil(Interpreter& interpreter)
return Value(::ceil(number.as_double()));
}
Value MathObject::round(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::round)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -130,7 +130,7 @@ Value MathObject::round(Interpreter& interpreter)
return Value(::round(number.as_double()));
}
Value MathObject::max(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::max)
{
if (!interpreter.argument_count())
return js_negative_infinity();
@ -147,7 +147,7 @@ Value MathObject::max(Interpreter& interpreter)
return max;
}
Value MathObject::min(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::min)
{
if (!interpreter.argument_count())
return js_infinity();
@ -164,7 +164,7 @@ Value MathObject::min(Interpreter& interpreter)
return min;
}
Value MathObject::trunc(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::trunc)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -172,11 +172,11 @@ Value MathObject::trunc(Interpreter& interpreter)
if (number.is_nan())
return js_nan();
if (number.as_double() < 0)
return MathObject::ceil(interpreter);
return MathObject::floor(interpreter);
return MathObject::ceil(interpreter, global_object);
return MathObject::floor(interpreter, global_object);
}
Value MathObject::sin(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::sin)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -186,7 +186,7 @@ Value MathObject::sin(Interpreter& interpreter)
return Value(::sin(number.as_double()));
}
Value MathObject::cos(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::cos)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -196,7 +196,7 @@ Value MathObject::cos(Interpreter& interpreter)
return Value(::cos(number.as_double()));
}
Value MathObject::tan(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::tan)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -206,12 +206,12 @@ Value MathObject::tan(Interpreter& interpreter)
return Value(::tan(number.as_double()));
}
Value MathObject::pow(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::pow)
{
return JS::exp(interpreter, interpreter.argument(0), interpreter.argument(1));
}
Value MathObject::exp(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::exp)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -221,7 +221,7 @@ Value MathObject::exp(Interpreter& interpreter)
return Value(::pow(M_E, number.as_double()));
}
Value MathObject::expm1(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::expm1)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -231,7 +231,7 @@ Value MathObject::expm1(Interpreter& interpreter)
return Value(::pow(M_E, number.as_double()) - 1);
}
Value MathObject::sign(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::sign)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())
@ -247,7 +247,7 @@ Value MathObject::sign(Interpreter& interpreter)
return js_nan();
}
Value MathObject::clz32(Interpreter& interpreter)
JS_DEFINE_NATIVE_FUNCTION(MathObject::clz32)
{
auto number = interpreter.argument(0).to_number(interpreter);
if (interpreter.exception())