1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-28 11:45:11 +00:00

Kernel: Create support for PCI ECAM

The new PCI subsystem is initialized during runtime.
PCI::Initializer is supposed to be called during early boot, to
perform a few tests, and initialize the proper configuration space
access mechanism. Kernel boot parameters can be specified by a user to
determine what tests will occur, to aid debugging on problematic
machines.
After that, PCI::Initializer should be dismissed.

PCI::IOAccess is a class that is derived from PCI::Access
class and implements PCI configuration space access mechanism via x86
IO ports.
PCI::MMIOAccess is a class that is derived from PCI::Access
and implements PCI configurtaion space access mechanism via memory
access.

The new PCI subsystem also supports determination of IO/MMIO space
needed by a device by checking a given BAR.
In addition, Every device or component that use the PCI subsystem has
changed to match the last changes.
This commit is contained in:
Liav A 2019-12-31 13:04:30 +02:00 committed by Andreas Kling
parent d85874be4b
commit e5ffa960d7
20 changed files with 878 additions and 16 deletions

View file

@ -290,10 +290,11 @@ RefPtr<GWidget> build_pci_devices_tab()
pci_fields.empend( pci_fields.empend(
"Address", TextAlignment::CenterLeft, "Address", TextAlignment::CenterLeft,
[](const JsonObject& object) { [](const JsonObject& object) {
auto seg = object.get("seg").to_u32();
auto bus = object.get("bus").to_u32(); auto bus = object.get("bus").to_u32();
auto slot = object.get("slot").to_u32(); auto slot = object.get("slot").to_u32();
auto function = object.get("function").to_u32(); auto function = object.get("function").to_u32();
return String::format("%02x:%02x.%d", bus, slot, function); return String::format("%04x:%02x:%02x.%d", seg, bus, slot, function);
}); });
pci_fields.empend( pci_fields.empend(
"Class", TextAlignment::CenterLeft, "Class", TextAlignment::CenterLeft,

View file

@ -1,6 +1,6 @@
#include <Kernel/Devices/BXVGADevice.h> #include <Kernel/Devices/BXVGADevice.h>
#include <Kernel/IO.h> #include <Kernel/IO.h>
#include <Kernel/PCI.h> #include <Kernel/PCI/Access.h>
#include <Kernel/Process.h> #include <Kernel/Process.h>
#include <Kernel/VM/AnonymousVMObject.h> #include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h> #include <Kernel/VM/MemoryManager.h>

View file

@ -14,7 +14,7 @@
#include <AK/RefPtr.h> #include <AK/RefPtr.h>
#include <Kernel/IRQHandler.h> #include <Kernel/IRQHandler.h>
#include <Kernel/Lock.h> #include <Kernel/Lock.h>
#include <Kernel/PCI.h> #include <Kernel/PCI/Access.h>
#include <Kernel/VM/PhysicalAddress.h> #include <Kernel/VM/PhysicalAddress.h>
#include <Kernel/VM/PhysicalPage.h> #include <Kernel/VM/PhysicalPage.h>
#include <Kernel/WaitQueue.h> #include <Kernel/WaitQueue.h>

View file

@ -22,7 +22,7 @@
#include <Kernel/Net/Routing.h> #include <Kernel/Net/Routing.h>
#include <Kernel/Net/TCPSocket.h> #include <Kernel/Net/TCPSocket.h>
#include <Kernel/Net/UDPSocket.h> #include <Kernel/Net/UDPSocket.h>
#include <Kernel/PCI.h> #include <Kernel/PCI/Access.h>
#include <Kernel/Profiling.h> #include <Kernel/Profiling.h>
#include <Kernel/VM/MemoryManager.h> #include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PurgeableVMObject.h> #include <Kernel/VM/PurgeableVMObject.h>
@ -289,6 +289,7 @@ Optional<KBuffer> procfs$pci(InodeIdentifier)
JsonArraySerializer array { builder }; JsonArraySerializer array { builder };
PCI::enumerate_all([&array](PCI::Address address, PCI::ID id) { PCI::enumerate_all([&array](PCI::Address address, PCI::ID id) {
auto obj = array.add_object(); auto obj = array.add_object();
obj.add("seg", address.seg());
obj.add("bus", address.bus()); obj.add("bus", address.bus());
obj.add("slot", address.slot()); obj.add("slot", address.slot());
obj.add("function", address.function()); obj.add("function", address.function());

View file

@ -71,7 +71,10 @@ OBJS = \
Net/Socket.o \ Net/Socket.o \
Net/TCPSocket.o \ Net/TCPSocket.o \
Net/UDPSocket.o \ Net/UDPSocket.o \
PCI.o \ PCI/Access.o \
PCI/IOAccess.o \
PCI/MMIOAccess.o \
PCI/Initializer.o \
Process.o \ Process.o \
ProcessTracer.o \ ProcessTracer.o \
Profiling.o \ Profiling.o \
@ -97,6 +100,10 @@ OBJS = \
VM/RangeAllocator.o \ VM/RangeAllocator.o \
VM/Region.o \ VM/Region.o \
VM/VMObject.o \ VM/VMObject.o \
ACPI/ACPIParser.o \
ACPI/ACPIStaticParser.o \
ACPI/ACPIDynamicParser.o \
ACPI/DMIDecoder.o \
WaitQueue.o \ WaitQueue.o \
init.o \ init.o \
kprintf.o kprintf.o

View file

@ -1,6 +1,5 @@
#include <Kernel/IO.h> #include <Kernel/IO.h>
#include <Kernel/Net/E1000NetworkAdapter.h> #include <Kernel/Net/E1000NetworkAdapter.h>
#include <Kernel/PCI.h>
#include <Kernel/Thread.h> #include <Kernel/Thread.h>
#define REG_CTRL 0x0000 #define REG_CTRL 0x0000
@ -119,6 +118,7 @@ E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address pci_address, u8 irq)
enable_bus_mastering(m_pci_address); enable_bus_mastering(m_pci_address);
m_mmio_base = PhysicalAddress(PCI::get_BAR0(m_pci_address)); m_mmio_base = PhysicalAddress(PCI::get_BAR0(m_pci_address));
u32 mmio_base_size = PCI::get_BAR_Space_Size(pci_address, 0);
MM.map_for_kernel(VirtualAddress(m_mmio_base.get()), m_mmio_base); MM.map_for_kernel(VirtualAddress(m_mmio_base.get()), m_mmio_base);
MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(4096).get()), m_mmio_base.offset(4096)); MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(4096).get()), m_mmio_base.offset(4096));
MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(8192).get()), m_mmio_base.offset(8192)); MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(8192).get()), m_mmio_base.offset(8192));
@ -129,6 +129,7 @@ E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address pci_address, u8 irq)
m_interrupt_line = PCI::get_interrupt_line(m_pci_address); m_interrupt_line = PCI::get_interrupt_line(m_pci_address);
kprintf("E1000: IO port base: %w\n", m_io_base); kprintf("E1000: IO port base: %w\n", m_io_base);
kprintf("E1000: MMIO base: P%x\n", m_mmio_base); kprintf("E1000: MMIO base: P%x\n", m_mmio_base);
kprintf("E1000: MMIO base size: %u bytes\n", mmio_base_size);
kprintf("E1000: Interrupt line: %u\n", m_interrupt_line); kprintf("E1000: Interrupt line: %u\n", m_interrupt_line);
detect_eeprom(); detect_eeprom();
kprintf("E1000: Has EEPROM? %u\n", m_has_eeprom); kprintf("E1000: Has EEPROM? %u\n", m_has_eeprom);

View file

@ -3,7 +3,7 @@
#include <AK/OwnPtr.h> #include <AK/OwnPtr.h>
#include <Kernel/IRQHandler.h> #include <Kernel/IRQHandler.h>
#include <Kernel/Net/NetworkAdapter.h> #include <Kernel/Net/NetworkAdapter.h>
#include <Kernel/PCI.h> #include <Kernel/PCI/Access.h>
class E1000NetworkAdapter final : public NetworkAdapter class E1000NetworkAdapter final : public NetworkAdapter
, public IRQHandler { , public IRQHandler {

View file

@ -1,6 +1,5 @@
#include <Kernel/IO.h> #include <Kernel/IO.h>
#include <Kernel/Net/RTL8139NetworkAdapter.h> #include <Kernel/Net/RTL8139NetworkAdapter.h>
#include <Kernel/PCI.h>
//#define RTL8139_DEBUG //#define RTL8139_DEBUG

View file

@ -3,7 +3,7 @@
#include <AK/OwnPtr.h> #include <AK/OwnPtr.h>
#include <Kernel/IRQHandler.h> #include <Kernel/IRQHandler.h>
#include <Kernel/Net/NetworkAdapter.h> #include <Kernel/Net/NetworkAdapter.h>
#include <Kernel/PCI.h> #include <Kernel/PCI/Access.h>
#define RTL8139_TX_BUFFER_COUNT 4 #define RTL8139_TX_BUFFER_COUNT 4

142
Kernel/PCI/Access.cpp Normal file
View file

@ -0,0 +1,142 @@
#include <Kernel/PCI/Access.h>
#include <Kernel/PCI/IOAccess.h>
static PCI::Access* s_access;
PCI::Access& PCI::Access::the()
{
if (s_access == nullptr) {
ASSERT_NOT_REACHED(); // We failed to initialize the PCI subsystem, so stop here!
}
return *s_access;
}
bool PCI::Access::is_initialized()
{
return (s_access != nullptr);
}
PCI::Access::Access()
{
s_access = this;
}
void PCI::Access::enumerate_functions(int type, u8 bus, u8 slot, u8 function, Function<void(Address, ID)>& callback)
{
Address address(0, bus, slot, function);
if (type == -1 || type == read_type(address))
callback(address, { read16_field(address, PCI_VENDOR_ID), read16_field(address, PCI_DEVICE_ID) });
if (read_type(address) == PCI_TYPE_BRIDGE) {
u8 secondary_bus = read8_field(address, PCI_SECONDARY_BUS);
#ifdef PCI_DEBUG
kprintf("PCI: Found secondary bus: %u\n", secondary_bus);
#endif
ASSERT(secondary_bus != bus);
enumerate_bus(type, secondary_bus, callback);
}
}
void PCI::Access::enumerate_slot(int type, u8 bus, u8 slot, Function<void(Address, ID)>& callback)
{
Address address(0, bus, slot, 0);
if (read16_field(address, PCI_VENDOR_ID) == PCI_NONE)
return;
enumerate_functions(type, bus, slot, 0, callback);
if (!(read8_field(address, PCI_HEADER_TYPE) & 0x80))
return;
for (u8 function = 1; function < 8; ++function) {
Address address(0, bus, slot, function);
if (read16_field(address, PCI_VENDOR_ID) != PCI_NONE)
enumerate_functions(type, bus, slot, function, callback);
}
}
void PCI::Access::enumerate_bus(int type, u8 bus, Function<void(Address, ID)>& callback)
{
for (u8 slot = 0; slot < 32; ++slot)
enumerate_slot(type, bus, slot, callback);
}
void PCI::Access::enable_bus_mastering(Address address)
{
auto value = read16_field(address, PCI_COMMAND);
value |= (1 << 2);
value |= (1 << 0);
write16_field(address, PCI_COMMAND, value);
}
void PCI::Access::disable_bus_mastering(Address address)
{
auto value = read16_field(address, PCI_COMMAND);
value &= ~(1 << 2);
value |= (1 << 0);
write16_field(address, PCI_COMMAND, value);
}
namespace PCI {
void enumerate_all(Function<void(Address, ID)> callback)
{
PCI::Access::the().enumerate_all(callback);
}
u8 get_interrupt_line(Address address)
{
return PCI::Access::the().get_interrupt_line(address);
}
u32 get_BAR0(Address address)
{
return PCI::Access::the().get_BAR0(address);
}
u32 get_BAR1(Address address)
{
return PCI::Access::the().get_BAR1(address);
}
u32 get_BAR2(Address address)
{
return PCI::Access::the().get_BAR2(address);
}
u32 get_BAR3(Address address)
{
return PCI::Access::the().get_BAR3(address);
}
u32 get_BAR4(Address address)
{
return PCI::Access::the().get_BAR4(address);
}
u32 get_BAR5(Address address)
{
return PCI::Access::the().get_BAR5(address);
}
u8 get_revision_id(Address address)
{
return PCI::Access::the().get_revision_id(address);
}
u8 get_subclass(Address address)
{
return PCI::Access::the().get_subclass(address);
}
u8 get_class(Address address)
{
return PCI::Access::the().get_class(address);
}
u16 get_subsystem_id(Address address)
{
return PCI::Access::the().get_subsystem_id(address);
}
u16 get_subsystem_vendor_id(Address address)
{
return PCI::Access::the().get_subsystem_vendor_id(address);
}
void enable_bus_mastering(Address address)
{
PCI::Access::the().enable_bus_mastering(address);
}
void disable_bus_mastering(Address address)
{
PCI::Access::the().disable_bus_mastering(address);
}
u32 get_BAR_Space_Size(Address address, u8 bar_number)
{
return PCI::Access::the().get_BAR_Space_Size(address, bar_number);
}
}

62
Kernel/PCI/Access.h Normal file
View file

@ -0,0 +1,62 @@
#pragma once
#include <AK/String.h>
#include <Kernel/PCI/Definitions.h>
class PCI::Access {
public:
virtual void enumerate_all(Function<void(Address, ID)>&) = 0;
virtual u8 get_interrupt_line(Address address) { return read8_field(address, PCI_INTERRUPT_LINE); }
virtual u32 get_BAR0(Address address) { return read32_field(address, PCI_BAR0); }
virtual u32 get_BAR1(Address address) { return read32_field(address, PCI_BAR1); }
virtual u32 get_BAR2(Address address) { return read32_field(address, PCI_BAR2); }
virtual u32 get_BAR3(Address address) { return read32_field(address, PCI_BAR3); }
virtual u32 get_BAR4(Address address) { return read32_field(address, PCI_BAR4); }
virtual u32 get_BAR5(Address address) { return read32_field(address, PCI_BAR5); }
virtual u32 get_BAR_Space_Size(Address address, u8 bar_number)
{
// See PCI Spec 2.3, Page 222
ASSERT(bar_number < 6);
u8 field = (PCI_BAR0 + (bar_number << 2));
u32 bar_reserved = read32_field(address, field);
write32_field(address, field, 0xFFFFFFFF);
u32 space_size = read32_field(address, field);
write32_field(address, field, bar_reserved);
space_size &= 0xfffffff0;
space_size = (~space_size) + 1;
return space_size;
}
virtual u8 get_revision_id(Address address) { return read8_field(address, PCI_REVISION_ID); }
virtual u8 get_subclass(Address address) { return read8_field(address, PCI_SUBCLASS); }
virtual u8 get_class(Address address) { return read8_field(address, PCI_CLASS); }
virtual u16 get_subsystem_id(Address address) { return read16_field(address, PCI_SUBSYSTEM_ID); }
virtual u16 get_subsystem_vendor_id(Address address) { return read16_field(address, PCI_SUBSYSTEM_VENDOR_ID); }
virtual u16 read_type(Address address) { return (read8_field(address, PCI_CLASS) << 8u) | read8_field(address, PCI_SUBCLASS); }
virtual void enable_bus_mastering(Address) final;
virtual void disable_bus_mastering(Address) final;
virtual void enumerate_bus(int type, u8 bus, Function<void(Address, ID)>&) final;
virtual void enumerate_functions(int type, u8 bus, u8 slot, u8 function, Function<void(Address, ID)>& callback) final;
virtual void enumerate_slot(int type, u8 bus, u8 slot, Function<void(Address, ID)>& callback) final;
static Access& the();
static bool is_initialized();
virtual uint32_t get_segments_count() = 0;
virtual uint8_t get_segment_start_bus(u32 segment) = 0;
virtual uint8_t get_segment_end_bus(u32 segment) = 0;
virtual String get_access_type() = 0;
protected:
Access();
virtual u8 read8_field(Address address, u32 field) = 0;
virtual u16 read16_field(Address address, u32 field) = 0;
virtual u32 read32_field(Address address, u32 field) = 0;
virtual void write8_field(Address address, u32 field, u8 value) = 0;
virtual void write16_field(Address address, u32 field, u16 value) = 0;
virtual void write32_field(Address address, u32 field, u32 value) = 0;
};

113
Kernel/PCI/Definitions.h Normal file
View file

@ -0,0 +1,113 @@
#pragma once
#include <AK/Function.h>
#include <AK/Types.h>
#define PCI_VENDOR_ID 0x00 // word
#define PCI_DEVICE_ID 0x02 // word
#define PCI_COMMAND 0x04 // word
#define PCI_STATUS 0x06 // word
#define PCI_REVISION_ID 0x08 // byte
#define PCI_PROG_IF 0x09 // byte
#define PCI_SUBCLASS 0x0a // byte
#define PCI_CLASS 0x0b // byte
#define PCI_CACHE_LINE_SIZE 0x0c // byte
#define PCI_LATENCY_TIMER 0x0d // byte
#define PCI_HEADER_TYPE 0x0e // byte
#define PCI_BIST 0x0f // byte
#define PCI_BAR0 0x10 // u32
#define PCI_BAR1 0x14 // u32
#define PCI_BAR2 0x18 // u32
#define PCI_BAR3 0x1C // u32
#define PCI_BAR4 0x20 // u32
#define PCI_BAR5 0x24 // u32
#define PCI_SUBSYSTEM_ID 0x2C // u16
#define PCI_SUBSYSTEM_VENDOR_ID 0x2E // u16
#define PCI_INTERRUPT_LINE 0x3C // byte
#define PCI_SECONDARY_BUS 0x19 // byte
#define PCI_HEADER_TYPE_DEVICE 0
#define PCI_HEADER_TYPE_BRIDGE 1
#define PCI_TYPE_BRIDGE 0x0604
#define PCI_ADDRESS_PORT 0xCF8
#define PCI_VALUE_PORT 0xCFC
#define PCI_NONE 0xFFFF
#define PCI_MAX_DEVICES_PER_BUS 32
#define PCI_MAX_BUSES 256
#define PCI_MAX_FUNCTIONS_PER_DEVICE 8
//#define PCI_DEBUG 1
namespace PCI {
struct ID {
u16 vendor_id { 0 };
u16 device_id { 0 };
bool is_null() const { return !vendor_id && !device_id; }
bool operator==(const ID& other) const
{
return vendor_id == other.vendor_id && device_id == other.device_id;
}
};
struct Address {
Address() {}
Address(u16 seg)
: m_seg(seg)
, m_bus(0)
, m_slot(0)
, m_function(0)
{
}
Address(u16 seg, u8 bus, u8 slot, u8 function)
: m_seg(seg)
, m_bus(bus)
, m_slot(slot)
, m_function(function)
{
}
bool is_null() const { return !m_bus && !m_slot && !m_function; }
operator bool() const { return !is_null(); }
u16 seg() const { return m_seg; }
u8 bus() const { return m_bus; }
u8 slot() const { return m_slot; }
u8 function() const { return m_function; }
u32 io_address_for_field(u8 field) const
{
return 0x80000000u | (m_bus << 16u) | (m_slot << 11u) | (m_function << 8u) | (field & 0xfc);
}
private:
u32 m_seg { 0 };
u8 m_bus { 0 };
u8 m_slot { 0 };
u8 m_function { 0 };
};
void enumerate_all(Function<void(Address, ID)> callback);
u8 get_interrupt_line(Address);
u32 get_BAR0(Address);
u32 get_BAR1(Address);
u32 get_BAR2(Address);
u32 get_BAR3(Address);
u32 get_BAR4(Address);
u32 get_BAR5(Address);
u8 get_revision_id(Address);
u8 get_subclass(Address);
u8 get_class(Address);
u16 get_subsystem_id(Address);
u16 get_subsystem_vendor_id(Address);
u32 get_BAR_Space_Size(Address, u8);
void enable_bus_mastering(Address);
void disable_bus_mastering(Address);
class Initializer;
class Access;
class MMIOAccess;
class IOAccess;
class MMIOSegment;
}

63
Kernel/PCI/IOAccess.cpp Normal file
View file

@ -0,0 +1,63 @@
#include <Kernel/IO.h>
#include <Kernel/PCI/IOAccess.h>
void PCI::IOAccess::initialize()
{
if (!PCI::Access::is_initialized())
new PCI::IOAccess();
}
PCI::IOAccess::IOAccess()
{
kprintf("PCI: Using IO Mechanism for PCI Configuartion Space Access\n");
}
u8 PCI::IOAccess::read8_field(Address address, u32 field)
{
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
return IO::in8(PCI_VALUE_PORT + (field & 3));
}
u16 PCI::IOAccess::read16_field(Address address, u32 field)
{
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
return IO::in16(PCI_VALUE_PORT + (field & 2));
}
u32 PCI::IOAccess::read32_field(Address address, u32 field)
{
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
return IO::in32(PCI_VALUE_PORT);
}
void PCI::IOAccess::write8_field(Address address, u32 field, u8 value)
{
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
IO::out8(PCI_VALUE_PORT + (field & 3), value);
}
void PCI::IOAccess::write16_field(Address address, u32 field, u16 value)
{
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
IO::out16(PCI_VALUE_PORT + (field & 2), value);
}
void PCI::IOAccess::write32_field(Address address, u32 field, u32 value)
{
IO::out32(PCI_ADDRESS_PORT, address.io_address_for_field(field));
IO::out32(PCI_VALUE_PORT, value);
}
void PCI::IOAccess::enumerate_all(Function<void(Address, ID)>& callback)
{
// Single PCI host controller.
if ((read8_field(Address(), PCI_HEADER_TYPE) & 0x80) == 0) {
enumerate_bus(-1, 0, callback);
return;
}
// Multiple PCI host controllers.
for (u8 function = 0; function < 8; ++function) {
if (read16_field(Address(0, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE)
break;
enumerate_bus(-1, function, callback);
}
}

25
Kernel/PCI/IOAccess.h Normal file
View file

@ -0,0 +1,25 @@
#pragma once
#include <Kernel/PCI/Access.h>
class PCI::IOAccess final : public PCI::Access {
public:
static void initialize();
virtual void enumerate_all(Function<void(Address, ID)>&) override final;
virtual String get_access_type() override final { return "IO-Access"; };
protected:
IOAccess();
private:
virtual u8 read8_field(Address address, u32) override final;
virtual u16 read16_field(Address address, u32) override final;
virtual u32 read32_field(Address address, u32) override final;
virtual void write8_field(Address address, u32, u8) override final;
virtual void write16_field(Address address, u32, u16) override final;
virtual void write32_field(Address address, u32, u32) override final;
virtual uint32_t get_segments_count() { return 1; };
virtual uint8_t get_segment_start_bus(u32) { return 0x0; };
virtual uint8_t get_segment_end_bus(u32) { return 0xFF; };
};

126
Kernel/PCI/Initializer.cpp Normal file
View file

@ -0,0 +1,126 @@
#include <Kernel/ACPI/ACPIParser.h>
#include <Kernel/ACPI/DMIDecoder.h>
#include <Kernel/IO.h>
#include <Kernel/KParams.h>
#include <Kernel/PCI/IOAccess.h>
#include <Kernel/PCI/Initializer.h>
#include <Kernel/PCI/MMIOAccess.h>
static PCI::Initializer* s_pci_initializer;
PCI::Initializer& PCI::Initializer::the()
{
if (s_pci_initializer == nullptr) {
s_pci_initializer = new PCI::Initializer();
}
return *s_pci_initializer;
}
void PCI::Initializer::initialize_pci_mmio_access(ACPI_RAW::MCFG& mcfg)
{
PCI::MMIOAccess::initialize(mcfg);
}
void PCI::Initializer::initialize_pci_io_access()
{
PCI::IOAccess::initialize();
}
void PCI::Initializer::test_and_initialize(bool disable_pci_mmio, bool pci_force_probing)
{
if (disable_pci_mmio) {
if (test_pci_io(pci_force_probing)) {
initialize_pci_io_access();
} else {
kprintf("No PCI Bus Access Method Detected, Halt!\n");
ASSERT_NOT_REACHED(); // NO PCI Access ?!
}
return;
}
if (test_acpi()) {
if (test_pci_mmio()) {
initialize_pci_mmio_access_after_test();
} else {
if (test_pci_io(pci_force_probing)) {
initialize_pci_io_access();
} else {
kprintf("No PCI Bus Access Method Detected, Halt!\n");
ASSERT_NOT_REACHED(); // NO PCI Access ?!
}
}
} else {
if (test_pci_io(pci_force_probing)) {
initialize_pci_io_access();
} else {
kprintf("No PCI Bus Access Method Detected, Halt!\n");
ASSERT_NOT_REACHED(); // NO PCI Access ?!
}
}
}
PCI::Initializer::Initializer()
{
}
bool PCI::Initializer::test_acpi()
{
if ((KParams::the().has("noacpi")) || !ACPIParser::the().is_operable())
return false;
else
return true;
}
bool PCI::Initializer::test_pci_io(bool pci_force_probing)
{
kprintf("Testing PCI via SMBIOS...\n");
if (!pci_force_probing) {
if (DMIDecoder::the().is_reliable()) {
if ((DMIDecoder::the().get_bios_characteristics() & (1 << 3)) != 0) {
kprintf("DMIDecoder: Warning, BIOS characteristics are not supported, skipping\n");
} else if ((DMIDecoder::the().get_bios_characteristics() & (u32)SMBIOS::BIOSCharacteristics::PCI_support) != 0) {
kprintf("PCI *should* be supported according to SMBIOS...\n");
return true;
} else {
kprintf("SMBIOS does not list PCI as supported, Falling back to manual probing!\n");
}
} else {
kprintf("DMI is classified as unreliable, ignore it!\n");
}
} else {
kprintf("Requested to force PCI probing...\n");
}
kprintf("Testing PCI via manual probing... ");
u32 tmp = 0x80000000;
IO::out32(PCI_ADDRESS_PORT, tmp);
tmp = IO::in32(PCI_ADDRESS_PORT);
if (tmp == 0x80000000) {
kprintf("PCI IO Supported!\n");
return true;
}
kprintf("PCI IO Not Supported!\n");
return false;
}
bool PCI::Initializer::test_pci_mmio()
{
if (ACPIParser::the().find_table("MCFG") != nullptr)
return true;
else
return false;
}
void PCI::Initializer::initialize_pci_mmio_access_after_test()
{
initialize_pci_mmio_access(*(ACPI_RAW::MCFG*)(ACPIParser::the().find_table("MCFG")));
}
void PCI::Initializer::dismiss()
{
if (s_pci_initializer == nullptr)
return;
kprintf("PCI Subsystem Initializer dismissed.\n");
s_pci_initializer->~Initializer();
}
PCI::Initializer::~Initializer()
{
}

22
Kernel/PCI/Initializer.h Normal file
View file

@ -0,0 +1,22 @@
#pragma once
#include <AK/Types.h>
#include <Kernel/ACPI/Definitions.h>
#include <Kernel/PCI/Definitions.h>
class PCI::Initializer {
public:
static PCI::Initializer& the();
void initialize_pci_mmio_access(ACPI_RAW::MCFG& mcfg);
void initialize_pci_io_access();
void test_and_initialize(bool disable_pci_mmio, bool pci_force_probing);
static void dismiss();
private:
~Initializer();
Initializer();
bool test_acpi();
bool test_pci_io(bool pci_force_probing);
bool test_pci_mmio();
void initialize_pci_mmio_access_after_test();
};

215
Kernel/PCI/MMIOAccess.cpp Normal file
View file

@ -0,0 +1,215 @@
#include <AK/Optional.h>
#include <Kernel/IO.h>
#include <Kernel/PCI/MMIOAccess.h>
#include <Kernel/VM/MemoryManager.h>
#define PCI_MMIO_CONFIG_SPACE_SIZE 4096
uint32_t PCI::MMIOAccess::get_segments_count()
{
return m_segments.size();
}
uint8_t PCI::MMIOAccess::get_segment_start_bus(u32 seg)
{
ASSERT(m_segments.contains(seg));
return m_segments.get(seg).value()->get_start_bus();
}
uint8_t PCI::MMIOAccess::get_segment_end_bus(u32 seg)
{
ASSERT(m_segments.contains(seg));
return m_segments.get(seg).value()->get_end_bus();
}
void PCI::MMIOAccess::initialize(ACPI_RAW::MCFG& mcfg)
{
if (!PCI::Access::is_initialized())
new PCI::MMIOAccess(mcfg);
}
PCI::MMIOAccess::MMIOAccess(ACPI_RAW::MCFG& raw_mcfg)
: m_mcfg(raw_mcfg)
, m_segments(*new HashMap<u16, MMIOSegment*>())
{
kprintf("PCI: Using MMIO Mechanism for PCI Configuartion Space Access\n");
m_mmio_segment = MM.allocate_kernel_region(PAGE_ROUND_UP(PCI_MMIO_CONFIG_SPACE_SIZE), "PCI MMIO", Region::Access::Read | Region::Access::Write);
OwnPtr<Region> checkup_region = MM.allocate_kernel_region((PAGE_SIZE * 2), "PCI MCFG Checkup", Region::Access::Read | Region::Access::Write);
#ifdef PCI_DEBUG
dbgprintf("PCI: Checking MCFG Table length to choose the correct mapping size\n");
#endif
mmap_region(*checkup_region, PhysicalAddress((u32)&raw_mcfg & 0xfffff000));
ACPI_RAW::SDTHeader* sdt = (ACPI_RAW::SDTHeader*)(checkup_region->vaddr().get() + ((u32)&raw_mcfg & 0xfff));
u32 length = sdt->length;
u8 revision = sdt->revision;
kprintf("PCI: MCFG, length - %u, revision %d\n", length, revision);
checkup_region->unmap();
auto mcfg_region = MM.allocate_kernel_region(PAGE_ROUND_UP(length) + PAGE_SIZE, "PCI Parsing MCFG", Region::Access::Read | Region::Access::Write);
mmap_region(*mcfg_region, PhysicalAddress((u32)&raw_mcfg & 0xfffff000));
ACPI_RAW::MCFG& mcfg = *((ACPI_RAW::MCFG*)(mcfg_region->vaddr().get() + ((u32)&raw_mcfg & 0xfff)));
#ifdef PCI_DEBUG
dbgprintf("PCI: Checking MCFG @ V 0x%x, P 0x%x\n", &mcfg, &raw_mcfg);
#endif
for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI_RAW::MCFG)) / sizeof(ACPI_RAW::PCI_MMIO_Descriptor)); index++) {
u8 start_bus = mcfg.descriptors[index].start_pci_bus;
u8 end_bus = mcfg.descriptors[index].end_pci_bus;
u32 lower_addr = mcfg.descriptors[index].base_addr;
m_segments.set(index, new PCI::MMIOSegment(PhysicalAddress(lower_addr), start_bus, end_bus));
kprintf("PCI: New PCI segment @ P 0x%x, PCI buses (%d-%d)\n", lower_addr, start_bus, end_bus);
}
mcfg_region->unmap();
kprintf("PCI: MMIO segments - %d\n", m_segments.size());
map_device(Address(0, 0, 0, 0));
}
void PCI::MMIOAccess::map_device(Address address)
{
// FIXME: Map and put some lock!
#ifdef PCI_DEBUG
dbgprintf("PCI: Mapping Device @ pci (%d:%d:%d:%d)\n", address.seg(), address.bus(), address.slot(), address.function());
#endif
ASSERT(m_segments.contains(address.seg()));
auto segment = m_segments.get(address.seg());
PhysicalAddress segment_lower_addr = segment.value()->get_paddr();
PhysicalAddress device_physical_mmio_space = segment_lower_addr.offset(
PCI_MMIO_CONFIG_SPACE_SIZE * address.function() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE) * address.slot() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS) * (address.bus() - segment.value()->get_start_bus()));
#ifdef PCI_DEBUG
dbgprintf("PCI: Mapping (%d:%d:%d:%d), V 0x%x, P 0x%x\n", address.seg(), address.bus(), address.slot(), address.function(), m_mmio_segment->vaddr().get(), device_physical_mmio_space.get());
#endif
MM.map_for_kernel(m_mmio_segment->vaddr(), device_physical_mmio_space, false);
}
u8 PCI::MMIOAccess::read8_field(Address address, u32 field)
{
ASSERT(field <= 0xfff);
#ifdef PCI_DEBUG
dbgprintf("PCI: Reading field %u, Address(%u:%u:%u:%u)\n", field, address.seg(), address.bus(), address.slot(), address.function());
#endif
map_device(address);
return *((u8*)(m_mmio_segment->vaddr().get() + (field & 0xfff)));
}
u16 PCI::MMIOAccess::read16_field(Address address, u32 field)
{
ASSERT(field < 0xfff);
#ifdef PCI_DEBUG
dbgprintf("PCI: Reading field %u, Address(%u:%u:%u:%u)\n", field, address.seg(), address.bus(), address.slot(), address.function());
#endif
map_device(address);
return *((u16*)(m_mmio_segment->vaddr().get() + (field & 0xfff)));
}
u32 PCI::MMIOAccess::read32_field(Address address, u32 field)
{
ASSERT(field <= 0xffc);
#ifdef PCI_DEBUG
dbgprintf("PCI: Reading field %u, Address(%u:%u:%u:%u)\n", field, address.seg(), address.bus(), address.slot(), address.function());
#endif
map_device(address);
return *((u32*)(m_mmio_segment->vaddr().get() + (field & 0xfff)));
}
void PCI::MMIOAccess::write8_field(Address address, u32 field, u8 value)
{
ASSERT(field <= 0xfff);
#ifdef PCI_DEBUG
dbgprintf("PCI: Write to field %u, Address(%u:%u:%u:%u), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value);
#endif
map_device(address);
*((u8*)(m_mmio_segment->vaddr().get() + (field & 0xfff))) = value;
}
void PCI::MMIOAccess::write16_field(Address address, u32 field, u16 value)
{
ASSERT(field < 0xfff);
#ifdef PCI_DEBUG
dbgprintf("PCI: Write to field %u, Address(%u:%u:%u:%u), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value);
#endif
map_device(address);
*((u16*)(m_mmio_segment->vaddr().get() + (field & 0xfff))) = value;
}
void PCI::MMIOAccess::write32_field(Address address, u32 field, u32 value)
{
ASSERT(field <= 0xffc);
#ifdef PCI_DEBUG
dbgprintf("PCI: Write to field %u, Address(%u:%u:%u:%u), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value);
#endif
map_device(address);
*((u32*)(m_mmio_segment->vaddr().get() + (field & 0xfff))) = value;
}
void PCI::MMIOAccess::enumerate_all(Function<void(Address, ID)>& callback)
{
for (u16 seg = 0; seg < m_segments.size(); seg++) {
#ifdef PCI_DEBUG
dbgprintf("PCI: Enumerating Memory mapped IO segment %u\n", seg);
#endif
// Single PCI host controller.
if ((read8_field(Address(seg), PCI_HEADER_TYPE) & 0x80) == 0) {
enumerate_bus(-1, 0, callback);
return;
}
// Multiple PCI host controllers.
for (u8 function = 0; function < 8; ++function) {
if (read16_field(Address(seg, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE)
break;
enumerate_bus(-1, function, callback);
}
}
}
void PCI::MMIOAccess::mmap(VirtualAddress vaddr, PhysicalAddress paddr, u32 length)
{
unsigned i = 0;
while (length >= PAGE_SIZE) {
MM.map_for_kernel(VirtualAddress(vaddr.offset(i * PAGE_SIZE).get()), PhysicalAddress(paddr.offset(i * PAGE_SIZE).get()));
#ifdef ACPI_DEBUG
dbgprintf("PCI: map - V 0x%x -> P 0x%x\n", vaddr.offset(i * PAGE_SIZE).get(), paddr.offset(i * PAGE_SIZE).get());
#endif
length -= PAGE_SIZE;
i++;
}
if (length > 0) {
MM.map_for_kernel(vaddr.offset(i * PAGE_SIZE), paddr.offset(i * PAGE_SIZE), true);
}
#ifdef ACPI_DEBUG
dbgprintf("PCI: Finished mapping\n");
#endif
}
void PCI::MMIOAccess::mmap_region(Region& region, PhysicalAddress paddr)
{
#ifdef PCI_DEBUG
dbgprintf("PCI: Mapping region, size - %u\n", region.size());
#endif
mmap(region.vaddr(), paddr, region.size());
}
PCI::MMIOSegment::MMIOSegment(PhysicalAddress segment_base_addr, u8 start_bus, u8 end_bus)
: m_base_addr(segment_base_addr)
, m_start_bus(start_bus)
, m_end_bus(end_bus)
{
}
u8 PCI::MMIOSegment::get_start_bus()
{
return m_start_bus;
}
u8 PCI::MMIOSegment::get_end_bus()
{
return m_end_bus;
}
size_t PCI::MMIOSegment::get_size()
{
return (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS * (get_end_bus() - get_start_bus()));
}
PhysicalAddress PCI::MMIOSegment::get_paddr()
{
return m_base_addr;
}

53
Kernel/PCI/MMIOAccess.h Normal file
View file

@ -0,0 +1,53 @@
#pragma once
#include <AK/HashMap.h>
#include <AK/OwnPtr.h>
#include <AK/Types.h>
#include <Kernel/ACPI/Definitions.h>
#include <Kernel/PCI/Access.h>
#include <Kernel/VM/PhysicalRegion.h>
#include <Kernel/VM/Region.h>
class PCI::MMIOAccess final : public PCI::Access {
public:
static void initialize(ACPI_RAW::MCFG&);
virtual void enumerate_all(Function<void(Address, ID)>&) override final;
virtual String get_access_type() override final { return "MMIO-Access"; };
protected:
MMIOAccess(ACPI_RAW::MCFG&);
private:
virtual u8 read8_field(Address address, u32) override final;
virtual u16 read16_field(Address address, u32) override final;
virtual u32 read32_field(Address address, u32) override final;
virtual void write8_field(Address address, u32, u8) override final;
virtual void write16_field(Address address, u32, u16) override final;
virtual void write32_field(Address address, u32, u32) override final;
void map_device(Address address);
void mmap(VirtualAddress preferred_vaddr, PhysicalAddress paddr, u32);
void mmap_region(Region& region, PhysicalAddress paddr);
virtual u32 get_segments_count();
virtual u8 get_segment_start_bus(u32);
virtual u8 get_segment_end_bus(u32);
ACPI_RAW::MCFG& m_mcfg;
HashMap<u16, MMIOSegment*>& m_segments;
OwnPtr<Region> m_mmio_segment;
};
class PCI::MMIOSegment {
public:
MMIOSegment(PhysicalAddress, u8, u8);
u8 get_start_bus();
u8 get_end_bus();
size_t get_size();
PhysicalAddress get_paddr();
private:
PhysicalAddress m_base_addr;
u8 m_start_bus;
u8 m_end_bus;
};

View file

@ -5,6 +5,9 @@
#include "Scheduler.h" #include "Scheduler.h"
#include "kstdio.h" #include "kstdio.h"
#include <AK/Types.h> #include <AK/Types.h>
#include <Kernel/ACPI/ACPIDynamicParser.h>
#include <Kernel/ACPI/ACPIStaticParser.h>
#include <Kernel/ACPI/DMIDecoder.h>
#include <Kernel/Arch/i386/APIC.h> #include <Kernel/Arch/i386/APIC.h>
#include <Kernel/Arch/i386/CPU.h> #include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Arch/i386/PIC.h> #include <Kernel/Arch/i386/PIC.h>
@ -39,7 +42,8 @@
#include <Kernel/Net/LoopbackAdapter.h> #include <Kernel/Net/LoopbackAdapter.h>
#include <Kernel/Net/NetworkTask.h> #include <Kernel/Net/NetworkTask.h>
#include <Kernel/Net/RTL8139NetworkAdapter.h> #include <Kernel/Net/RTL8139NetworkAdapter.h>
#include <Kernel/PCI.h> #include <Kernel/PCI/Access.h>
#include <Kernel/PCI/Initializer.h>
#include <Kernel/TTY/PTYMultiplexer.h> #include <Kernel/TTY/PTYMultiplexer.h>
#include <Kernel/TTY/VirtualConsole.h> #include <Kernel/TTY/VirtualConsole.h>
#include <Kernel/VM/MemoryManager.h> #include <Kernel/VM/MemoryManager.h>
@ -245,6 +249,35 @@ extern "C" [[noreturn]] void init(u32 physical_address_for_kernel_page_tables)
new KParams(String(reinterpret_cast<const char*>(multiboot_info_ptr->cmdline))); new KParams(String(reinterpret_cast<const char*>(multiboot_info_ptr->cmdline)));
bool text_debug = KParams::the().has("text_debug"); bool text_debug = KParams::the().has("text_debug");
bool complete_acpi_disable = KParams::the().has("noacpi");
bool dynamic_acpi_disable = KParams::the().has("noacpi_aml");
bool pci_mmio_disable = KParams::the().has("nopci_mmio");
bool pci_force_probing = KParams::the().has("pci_nodmi");
bool dmi_unreliable = KParams::the().has("dmi_unreliable");
MemoryManager::initialize(physical_address_for_kernel_page_tables);
if (dmi_unreliable) {
DMIDecoder::initialize_untrusted();
} else {
DMIDecoder::initialize();
}
if (complete_acpi_disable) {
ACPIParser::initialize_limited();
} else {
if (!dynamic_acpi_disable) {
ACPIDynamicParser::initialize_without_rsdp();
} else {
ACPIStaticParser::initialize_without_rsdp();
}
}
// Sample test to see if the ACPI parser is working...
kprintf("ACPI: HPET table @ P 0x%x\n", ACPIParser::the().find_table("HPET"));
PCI::Initializer::the().test_and_initialize(pci_mmio_disable, pci_force_probing);
PCI::Initializer::the().dismiss();
vfs = new VFS; vfs = new VFS;
dev_debuglog = new DebugLogDevice; dev_debuglog = new DebugLogDevice;
@ -298,15 +331,14 @@ extern "C" [[noreturn]] void init(u32 physical_address_for_kernel_page_tables)
tty1 = new VirtualConsole(1); tty1 = new VirtualConsole(1);
VirtualConsole::switch_to(0); VirtualConsole::switch_to(0);
MemoryManager::initialize(physical_address_for_kernel_page_tables);
if (APIC::init()) if (APIC::init())
APIC::enable(0); APIC::enable(0);
PIT::initialize(); PIT::initialize();
PCI::enumerate_all([](const PCI::Address& address, PCI::ID id) { PCI::enumerate_all([](const PCI::Address& address, PCI::ID id) {
kprintf("PCI device: bus=%d slot=%d function=%d id=%w:%w\n", kprintf("PCI: device @ %w:%b:%b.%d [%w:%w]\n",
address.seg(),
address.bus(), address.bus(),
address.slot(), address.slot(),
address.function(), address.function(),

View file

@ -24,7 +24,7 @@ int main(int argc, char** argv)
auto json = JsonValue::from_string(file_contents).as_array(); auto json = JsonValue::from_string(file_contents).as_array();
json.for_each([db](auto& value) { json.for_each([db](auto& value) {
auto dev = value.as_object(); auto dev = value.as_object();
auto seg = dev.get("seg").to_u32();
auto bus = dev.get("bus").to_u32(); auto bus = dev.get("bus").to_u32();
auto slot = dev.get("slot").to_u32(); auto slot = dev.get("slot").to_u32();
auto function = dev.get("function").to_u32(); auto function = dev.get("function").to_u32();
@ -48,8 +48,8 @@ int main(int argc, char** argv)
if (class_ptr != "") if (class_ptr != "")
class_name = class_ptr; class_name = class_ptr;
printf("%02x:%02x.%d %s: %s %s (rev %02x)\n", printf("%04x:%02x:%02x.%d %s: %s %s (rev %02x)\n",
bus, slot, function, seg, bus, slot, function,
class_name.characters(), vendor_name.characters(), class_name.characters(), vendor_name.characters(),
device_name.characters(), revision_id); device_name.characters(), revision_id);
}); });