1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-07-25 18:57:45 +00:00

UserspaceEmulator: Make it possible to wrap PODs in ValueWithShadow

Instead of making it hold the shadow data as another `T`, make it hold
the data as a byte array, and allow it to read the byte array as `T`.
This makes it much easier to make a "read_typed" function in the MMU.
This commit is contained in:
Ali Mohammad Pur 2022-02-27 23:56:46 +03:30 committed by Andreas Kling
parent e08cf8f554
commit f6e82a8e0a
7 changed files with 115 additions and 101 deletions

View file

@ -6,6 +6,7 @@
#include "MmapRegion.h" #include "MmapRegion.h"
#include "Emulator.h" #include "Emulator.h"
#include <AK/ByteReader.h>
#include <string.h> #include <string.h>
#include <sys/mman.h> #include <sys/mman.h>
@ -196,7 +197,7 @@ void MmapRegion::write8(u32 offset, ValueWithShadow<u8> value)
VERIFY(offset < size()); VERIFY(offset < size());
m_data[offset] = value.value(); m_data[offset] = value.value();
m_shadow_data[offset] = value.shadow(); m_shadow_data[offset] = value.shadow()[0];
} }
void MmapRegion::write16(u32 offset, ValueWithShadow<u16> value) void MmapRegion::write16(u32 offset, ValueWithShadow<u16> value)

View file

@ -85,7 +85,7 @@ void SimpleRegion::write8(u32 offset, ValueWithShadow<u8> value)
{ {
VERIFY(offset < size()); VERIFY(offset < size());
m_data[offset] = value.value(); m_data[offset] = value.value();
m_shadow_data[offset] = value.shadow(); m_shadow_data[offset] = value.shadow()[0];
} }
void SimpleRegion::write16(u32 offset, ValueWithShadow<u16> value) void SimpleRegion::write16(u32 offset, ValueWithShadow<u16> value)

View file

@ -10,6 +10,7 @@
#include <AK/Assertions.h> #include <AK/Assertions.h>
#include <AK/BuiltinWrappers.h> #include <AK/BuiltinWrappers.h>
#include <AK/Debug.h> #include <AK/Debug.h>
#include <AK/Format.h>
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <unistd.h> #include <unistd.h>
@ -87,8 +88,8 @@ void SoftCPU::dump() const
{ {
outln(" eax={:p} ebx={:p} ecx={:p} edx={:p} ebp={:p} esp={:p} esi={:p} edi={:p} o={:d} s={:d} z={:d} a={:d} p={:d} c={:d}", outln(" eax={:p} ebx={:p} ecx={:p} edx={:p} ebp={:p} esp={:p} esi={:p} edi={:p} o={:d} s={:d} z={:d} a={:d} p={:d} c={:d}",
eax(), ebx(), ecx(), edx(), ebp(), esp(), esi(), edi(), of(), sf(), zf(), af(), pf(), cf()); eax(), ebx(), ecx(), edx(), ebp(), esp(), esi(), edi(), of(), sf(), zf(), af(), pf(), cf());
outln("#eax={:p} #ebx={:p} #ecx={:p} #edx={:p} #ebp={:p} #esp={:p} #esi={:p} #edi={:p} #f={}", outln("#eax={:hex-dump} #ebx={:hex-dump} #ecx={:hex-dump} #edx={:hex-dump} #ebhex-dump={:hex-dump} #eshex-dump={:hex-dump} #esi={:hex-dump} #edi={:hex-dump} #f={}",
eax().shadow(), ebx().shadow(), ecx().shadow(), edx().shadow(), ebp().shadow(), esp().shadow(), esi().shadow(), edi().shadow(), m_flags_tainted); eax().shadow().span(), ebx().shadow().span(), ecx().shadow().span(), edx().shadow().span(), ebp().shadow().span(), esp().shadow().span(), esi().shadow().span(), edi().shadow().span(), m_flags_tainted);
fflush(stdout); fflush(stdout);
} }
@ -112,7 +113,7 @@ ValueWithShadow<u8> SoftCPU::read_memory8(X86::LogicalAddress address)
{ {
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read8(address); auto value = m_emulator.mmu().read8(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory8: @{:#04x}:{:p} -> {:#02x} ({:#02x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory8: @{:#04x}:{:p} -> {:#02x} ({:#02x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value; return value;
} }
@ -120,7 +121,7 @@ ValueWithShadow<u16> SoftCPU::read_memory16(X86::LogicalAddress address)
{ {
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read16(address); auto value = m_emulator.mmu().read16(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory16: @{:#04x}:{:p} -> {:#04x} ({:#04x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory16: @{:#04x}:{:p} -> {:#04x} ({:#04x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value; return value;
} }
@ -128,7 +129,7 @@ ValueWithShadow<u32> SoftCPU::read_memory32(X86::LogicalAddress address)
{ {
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read32(address); auto value = m_emulator.mmu().read32(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory32: @{:#04x}:{:p} -> {:#08x} ({:#08x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory32: @{:#04x}:{:p} -> {:#08x} ({:#08x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value; return value;
} }
@ -136,7 +137,7 @@ ValueWithShadow<u64> SoftCPU::read_memory64(X86::LogicalAddress address)
{ {
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read64(address); auto value = m_emulator.mmu().read64(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory64: @{:#04x}:{:p} -> {:#016x} ({:#016x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory64: @{:#04x}:{:p} -> {:#016x} ({:#016x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value; return value;
} }
@ -144,62 +145,62 @@ ValueWithShadow<u128> SoftCPU::read_memory128(X86::LogicalAddress address)
{ {
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read128(address); auto value = m_emulator.mmu().read128(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory128: @{:#04x}:{:p} -> {:#032x} ({:#032x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory128: @{:#04x}:{:p} -> {:#032x} ({:#032x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value; return value;
} }
ValueWithShadow<u256> SoftCPU::read_memory256(X86::LogicalAddress address) ValueWithShadow<u256> SoftCPU::read_memory256(X86::LogicalAddress address)
{ {
VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b);
auto value = m_emulator.mmu().read256(address); auto value = m_emulator.mmu().read256(address);
outln_if(MEMORY_DEBUG, "\033[36;1mread_memory256: @{:#04x}:{:p} -> {:#064x} ({:#064x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory256: @{:#04x}:{:p} -> {:#064x} ({:#064x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
return value; return value;
} }
void SoftCPU::write_memory8(X86::LogicalAddress address, ValueWithShadow<u8> value) void SoftCPU::write_memory8(X86::LogicalAddress address, ValueWithShadow<u8> value)
{ {
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory8: @{:#04x}:{:p} <- {:#02x} ({:#02x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory8: @{:#04x}:{:p} <- {:#02x} ({:#02x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write8(address, value); m_emulator.mmu().write8(address, value);
} }
void SoftCPU::write_memory16(X86::LogicalAddress address, ValueWithShadow<u16> value) void SoftCPU::write_memory16(X86::LogicalAddress address, ValueWithShadow<u16> value)
{ {
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory16: @{:#04x}:{:p} <- {:#04x} ({:#04x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory16: @{:#04x}:{:p} <- {:#04x} ({:#04x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write16(address, value); m_emulator.mmu().write16(address, value);
} }
void SoftCPU::write_memory32(X86::LogicalAddress address, ValueWithShadow<u32> value) void SoftCPU::write_memory32(X86::LogicalAddress address, ValueWithShadow<u32> value)
{ {
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory32: @{:#04x}:{:p} <- {:#08x} ({:#08x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory32: @{:#04x}:{:p} <- {:#08x} ({:#08x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write32(address, value); m_emulator.mmu().write32(address, value);
} }
void SoftCPU::write_memory64(X86::LogicalAddress address, ValueWithShadow<u64> value) void SoftCPU::write_memory64(X86::LogicalAddress address, ValueWithShadow<u64> value)
{ {
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory64: @{:#04x}:{:p} <- {:#016x} ({:#016x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory64: @{:#04x}:{:p} <- {:#016x} ({:#016x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write64(address, value); m_emulator.mmu().write64(address, value);
} }
void SoftCPU::write_memory128(X86::LogicalAddress address, ValueWithShadow<u128> value) void SoftCPU::write_memory128(X86::LogicalAddress address, ValueWithShadow<u128> value)
{ {
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory128: @{:#04x}:{:p} <- {:#032x} ({:#032x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory128: @{:#04x}:{:p} <- {:#032x} ({:#032x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write128(address, value); m_emulator.mmu().write128(address, value);
} }
void SoftCPU::write_memory256(X86::LogicalAddress address, ValueWithShadow<u256> value) void SoftCPU::write_memory256(X86::LogicalAddress address, ValueWithShadow<u256> value)
{ {
VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); VERIFY(address.selector() == 0x23 || address.selector() == 0x2b);
outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory256: @{:#04x}:{:p} <- {:#064x} ({:#064x})\033[0m", address.selector(), address.offset(), value, value.shadow()); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory256: @{:#04x}:{:p} <- {:#064x} ({:#064x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value());
m_emulator.mmu().write256(address, value); m_emulator.mmu().write256(address, value);
} }
void SoftCPU::push_string(StringView string) void SoftCPU::push_string(StringView string)
{ {
size_t space_to_allocate = round_up_to_power_of_two(string.length() + 1, 16); u32 space_to_allocate = round_up_to_power_of_two(string.length() + 1, 16);
set_esp({ esp().value() - space_to_allocate, esp().shadow() }); set_esp({ esp().value() - space_to_allocate, esp().shadow() });
m_emulator.mmu().copy_to_vm(esp().value(), string.characters_without_null_termination(), string.length()); m_emulator.mmu().copy_to_vm(esp().value(), string.characters_without_null_termination(), string.length());
m_emulator.mmu().write8({ 0x23, esp().value() + string.length() }, shadow_wrap_as_initialized((u8)'\0')); m_emulator.mmu().write8({ 0x23, esp().value() + string.length() }, shadow_wrap_as_initialized((u8)'\0'));
@ -1040,7 +1041,7 @@ void SoftCPU::BSR_reg32_RM32(const X86::Instruction& insn)
void SoftCPU::BSWAP_reg32(const X86::Instruction& insn) void SoftCPU::BSWAP_reg32(const X86::Instruction& insn)
{ {
gpr32(insn.reg32()) = { __builtin_bswap32(gpr32(insn.reg32()).value()), __builtin_bswap32(gpr32(insn.reg32()).shadow()) }; gpr32(insn.reg32()) = { __builtin_bswap32(gpr32(insn.reg32()).value()), __builtin_bswap32(gpr32(insn.reg32()).shadow_as_value()) };
} }
template<typename T> template<typename T>
@ -1970,19 +1971,19 @@ void SoftCPU::MOVSX_reg32_RM8(const X86::Instruction& insn)
void SoftCPU::MOVZX_reg16_RM8(const X86::Instruction& insn) void SoftCPU::MOVZX_reg16_RM8(const X86::Instruction& insn)
{ {
auto src = insn.modrm().read8(*this, insn); auto src = insn.modrm().read8(*this, insn);
gpr16(insn.reg16()) = ValueWithShadow<u16>(src.value(), 0x0100 | (src.shadow() & 0xff)); gpr16(insn.reg16()) = ValueWithShadow<u16>(src.value(), 0x0100 | (src.shadow_as_value() & 0xff));
} }
void SoftCPU::MOVZX_reg32_RM16(const X86::Instruction& insn) void SoftCPU::MOVZX_reg32_RM16(const X86::Instruction& insn)
{ {
auto src = insn.modrm().read16(*this, insn); auto src = insn.modrm().read16(*this, insn);
gpr32(insn.reg32()) = ValueWithShadow<u32>(src.value(), 0x01010000 | (src.shadow() & 0xffff)); gpr32(insn.reg32()) = ValueWithShadow<u32>(src.value(), 0x01010000 | (src.shadow_as_value() & 0xffff));
} }
void SoftCPU::MOVZX_reg32_RM8(const X86::Instruction& insn) void SoftCPU::MOVZX_reg32_RM8(const X86::Instruction& insn)
{ {
auto src = insn.modrm().read8(*this, insn); auto src = insn.modrm().read8(*this, insn);
gpr32(insn.reg32()) = ValueWithShadow<u32>(src.value(), 0x01010100 | (src.shadow() & 0xff)); gpr32(insn.reg32()) = ValueWithShadow<u32>(src.value(), 0x01010100 | (src.shadow_as_value() & 0xff));
} }
void SoftCPU::MOV_AL_moff8(const X86::Instruction& insn) void SoftCPU::MOV_AL_moff8(const X86::Instruction& insn)

View file

@ -176,21 +176,21 @@ public:
{ {
if (a32) if (a32)
return esi(); return esi();
return { si().value(), (u32)si().shadow() & 0xffff }; return { si().value(), (u32)si().shadow_as_value() & 0xffff };
} }
ValueWithShadow<u32> destination_index(bool a32) const ValueWithShadow<u32> destination_index(bool a32) const
{ {
if (a32) if (a32)
return edi(); return edi();
return { di().value(), (u32)di().shadow() & 0xffff }; return { di().value(), (u32)di().shadow_as_value() & 0xffff };
} }
ValueWithShadow<u32> loop_index(bool a32) const ValueWithShadow<u32> loop_index(bool a32) const
{ {
if (a32) if (a32)
return ecx(); return ecx();
return { cx().value(), (u32)cx().shadow() & 0xffff }; return { cx().value(), (u32)cx().shadow_as_value() & 0xffff };
} }
bool decrement_loop_index(bool a32) bool decrement_loop_index(bool a32)

View file

@ -300,7 +300,7 @@ void SoftFPU::FSTP_RM80(const X86::Instruction& insn)
f80 = insn.modrm().read128(m_cpu, insn); f80 = insn.modrm().read128(m_cpu, insn);
*(long double*)value.bytes().data() = fpu_pop(); *(long double*)value.bytes().data() = fpu_pop();
memcpy(f80.value().bytes().data(), &value, 10); // copy memcpy(f80.value().bytes().data(), &value, 10); // copy
memset(f80.shadow().bytes().data(), 0x01, 10); // mark as initialized f80.set_initialized();
insn.modrm().write128(m_cpu, insn, f80); insn.modrm().write128(m_cpu, insn, f80);
} }
} }
@ -688,7 +688,7 @@ void SoftFPU::FDIVR_RM64(const X86::Instruction& insn)
{ {
if (insn.modrm().is_register()) { if (insn.modrm().is_register()) {
// XXX this is FDIVR, Instruction decodes this weirdly // XXX this is FDIVR, Instruction decodes this weirdly
//fpu_set(insn.modrm().register_index(), fpu_get(0) / fpu_get(insn.modrm().register_index())); // fpu_set(insn.modrm().register_index(), fpu_get(0) / fpu_get(insn.modrm().register_index()));
fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) / fpu_get(0)); fpu_set(insn.modrm().register_index(), fpu_get(insn.modrm().register_index()) / fpu_get(0));
} else { } else {
auto new_f64 = insn.modrm().read64(m_cpu, insn); auto new_f64 = insn.modrm().read64(m_cpu, insn);
@ -1167,13 +1167,13 @@ void SoftFPU::FNSTENV(const X86::Instruction& insn)
* | | TW | 8 * | | TW | 8
* +----------------+---------------+ * +----------------+---------------+
* | FIP | 12 * | FIP | 12
* +----+-----------+---------------+ * +----+-----------+---------------+
* |0000|fpuOp[10:0]| FIP_sel | 16 * |0000|fpuOp[10:0]| FIP_sel | 16
* +----+-----------+---------------+ * +----+-----------+---------------+
* | FDP | 20 * | FDP | 20
* +----------------+---------------+ * +----------------+---------------+
* | | FDP_ds | 24 * | | FDP_ds | 24
* +----------------|---------------+ * +----------------|---------------+
* */ * */
auto address = insn.modrm().resolve(m_cpu, insn); auto address = insn.modrm().resolve(m_cpu, insn);

View file

@ -347,7 +347,7 @@ bool SoftMMU::fast_fill_memory8(X86::LogicalAddress address, size_t size, ValueW
size_t offset_in_region = address.offset() - region->base(); size_t offset_in_region = address.offset() - region->base();
memset(region->data() + offset_in_region, value.value(), size); memset(region->data() + offset_in_region, value.value(), size);
memset(region->shadow_data() + offset_in_region, value.shadow(), size); memset(region->shadow_data() + offset_in_region, value.shadow()[0], size);
return true; return true;
} }
@ -372,7 +372,7 @@ bool SoftMMU::fast_fill_memory32(X86::LogicalAddress address, size_t count, Valu
size_t offset_in_region = address.offset() - region->base(); size_t offset_in_region = address.offset() - region->base();
fast_u32_fill((u32*)(region->data() + offset_in_region), value.value(), count); fast_u32_fill((u32*)(region->data() + offset_in_region), value.value(), count);
fast_u32_fill((u32*)(region->shadow_data() + offset_in_region), value.shadow(), count); fast_u32_fill((u32*)(region->shadow_data() + offset_in_region), value.shadow_as_value(), count);
return true; return true;
} }

View file

@ -13,10 +13,6 @@
namespace UserspaceEmulator { namespace UserspaceEmulator {
constexpr u64 _initialized_64 = 0x01010101'01010101LLU;
constexpr u128 _initialized_128 = u128(_initialized_64, _initialized_64);
constexpr u256 _initialized_256 = u256(_initialized_128, _initialized_128);
template<typename T> template<typename T>
class ValueAndShadowReference; class ValueAndShadowReference;
@ -24,114 +20,134 @@ template<typename T>
class ValueWithShadow { class ValueWithShadow {
public: public:
using ValueType = T; using ValueType = T;
using ShadowType = Array<u8, sizeof(T)>;
ValueWithShadow() = default;
ValueWithShadow(T value, T shadow) ValueWithShadow(T value, T shadow)
: m_value(value) : m_value(value)
{
ReadonlyBytes { &shadow, sizeof(shadow) }.copy_to(m_shadow);
}
ValueWithShadow(T value, ShadowType shadow)
: m_value(value)
, m_shadow(shadow) , m_shadow(shadow)
{ {
} }
ValueWithShadow(const ValueAndShadowReference<T>&); static ValueWithShadow create_initialized(T value)
{
ShadowType shadow;
shadow.fill(0x01);
return {
value,
shadow,
};
}
ValueWithShadow(ValueAndShadowReference<T> const&);
T value() const { return m_value; } T value() const { return m_value; }
T shadow() const { return m_shadow; } ShadowType const& shadow() const { return m_shadow; }
T shadow_as_value() const requires(IsTriviallyConstructible<T>)
{
return *bit_cast<T const*>(m_shadow.data());
}
template<auto member>
auto reference_to() requires(IsClass<T> || IsUnion<T>)
{
using ResultType = ValueAndShadowReference<RemoveReference<decltype(declval<T>().*member)>>;
return ResultType {
m_value.*member,
*bit_cast<typename ResultType::ShadowType*>(m_shadow.span().offset_pointer(bit_cast<u8*>(member) - bit_cast<u8*>(nullptr))),
};
}
template<auto member>
auto slice() const requires(IsClass<T> || IsUnion<T>)
{
using ResultType = ValueWithShadow<RemoveReference<decltype(declval<T>().*member)>>;
return ResultType {
m_value.*member,
*bit_cast<typename ResultType::ShadowType*>(m_shadow.span().offset_pointer(bit_cast<u8*>(member) - bit_cast<u8*>(nullptr))),
};
}
bool is_uninitialized() const bool is_uninitialized() const
{ {
if constexpr (sizeof(T) == 32) for (size_t i = 0; i < sizeof(ShadowType); ++i) {
return (m_shadow & _initialized_256) != _initialized_256; if ((m_shadow[i] & 0x01) != 0x01)
if constexpr (sizeof(T) == 16) return true;
return (m_shadow & _initialized_128) != _initialized_128; }
if constexpr (sizeof(T) == 8) return false;
return (m_shadow & _initialized_64) != _initialized_64;
if constexpr (sizeof(T) == 4)
return (m_shadow & 0x01010101) != 0x01010101;
if constexpr (sizeof(T) == 2)
return (m_shadow & 0x0101) != 0x0101;
if constexpr (sizeof(T) == 1)
return (m_shadow & 0x01) != 0x01;
} }
void set_initialized() void set_initialized()
{ {
if constexpr (sizeof(T) == 32) m_shadow.fill(0x01);
m_shadow = _initialized_256;
if constexpr (sizeof(T) == 16)
m_shadow = _initialized_128;
if constexpr (sizeof(T) == 8)
m_shadow = _initialized_64;
if constexpr (sizeof(T) == 4)
m_shadow = 0x01010101;
if constexpr (sizeof(T) == 2)
m_shadow = 0x0101;
if constexpr (sizeof(T) == 1)
m_shadow = 0x01;
} }
private: private:
T m_value; T m_value {};
T m_shadow; ShadowType m_shadow {};
}; };
template<typename T> template<typename T>
class ValueAndShadowReference { class ValueAndShadowReference {
public: public:
using ValueType = T; using ValueType = T;
using ShadowType = Array<u8, sizeof(T)>;
ValueAndShadowReference(T& value, T& shadow) ValueAndShadowReference(T& value, ShadowType& shadow)
: m_value(value) : m_value(value)
, m_shadow(shadow) , m_shadow(shadow)
{ {
} }
ValueAndShadowReference(T& value, T& shadow)
: m_value(value)
, m_shadow(*bit_cast<ShadowType*>(&shadow))
{
}
bool is_uninitialized() const bool is_uninitialized() const
{ {
if constexpr (sizeof(T) == 32) for (size_t i = 0; i < sizeof(ShadowType); ++i) {
return (m_shadow & _initialized_256) != _initialized_256; if ((m_shadow[i] & 0x01) != 0x01)
if constexpr (sizeof(T) == 16) return true;
return (m_shadow & _initialized_128) != _initialized_128; }
if constexpr (sizeof(T) == 8) return false;
return (m_shadow & _initialized_64) != _initialized_64;
if constexpr (sizeof(T) == 4)
return (m_shadow & 0x01010101) != 0x01010101;
if constexpr (sizeof(T) == 2)
return (m_shadow & 0x0101) != 0x0101;
if constexpr (sizeof(T) == 1)
return (m_shadow & 0x01) != 0x01;
} }
ValueAndShadowReference<T>& operator=(const ValueWithShadow<T>&); ValueAndShadowReference<T>& operator=(const ValueWithShadow<T>&);
T& value() { return m_value; } T shadow_as_value() const requires(IsTriviallyConstructible<T>)
T& shadow() { return m_shadow; } {
return *bit_cast<T const*>(m_shadow.data());
}
const T& value() const { return m_value; } T& value() { return m_value; }
const T& shadow() const { return m_shadow; } ShadowType& shadow() { return m_shadow; }
T const& value() const { return m_value; }
ShadowType const& shadow() const { return m_shadow; }
private: private:
T& m_value; T& m_value;
T& m_shadow; ShadowType& m_shadow;
}; };
template<typename T> template<typename T>
ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_as_initialized(T value) ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_as_initialized(T value)
{ {
if constexpr (sizeof(T) == 32) return ValueWithShadow<T>::create_initialized(value);
return { value, _initialized_256 };
if constexpr (sizeof(T) == 16)
return { value, _initialized_128 };
if constexpr (sizeof(T) == 8)
return { value, _initialized_64 };
if constexpr (sizeof(T) == 4)
return { value, 0x01010101 };
if constexpr (sizeof(T) == 2)
return { value, 0x0101 };
if constexpr (sizeof(T) == 1)
return { value, 0x01 };
} }
template<typename T, typename U> template<typename T, typename U>
ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_with_taint_from(T value, const U& taint_a) ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_with_taint_from(T value, U const& taint_a)
{ {
if (taint_a.is_uninitialized()) if (taint_a.is_uninitialized())
return { value, 0 }; return { value, 0 };
@ -139,7 +155,7 @@ ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_with_taint_from(T value, const U& t
} }
template<typename T, typename U, typename V> template<typename T, typename U, typename V>
ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_with_taint_from(T value, const U& taint_a, const V& taint_b) ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_with_taint_from(T value, U const& taint_a, V const& taint_b)
{ {
if (taint_a.is_uninitialized() || taint_b.is_uninitialized()) if (taint_a.is_uninitialized() || taint_b.is_uninitialized())
return { value, 0 }; return { value, 0 };
@ -147,7 +163,7 @@ ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_with_taint_from(T value, const U& t
} }
template<typename T, typename U, typename V, typename X> template<typename T, typename U, typename V, typename X>
ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_with_taint_from(T value, const U& taint_a, const V& taint_b, const X& taint_c) ALWAYS_INLINE ValueWithShadow<T> shadow_wrap_with_taint_from(T value, U const& taint_a, V const& taint_b, X const& taint_c)
{ {
if (taint_a.is_uninitialized() || taint_b.is_uninitialized() || taint_c.is_uninitialized()) if (taint_a.is_uninitialized() || taint_b.is_uninitialized() || taint_c.is_uninitialized())
return { value, 0 }; return { value, 0 };
@ -178,7 +194,3 @@ struct AK::Formatter<UserspaceEmulator::ValueWithShadow<T>> : AK::Formatter<T> {
return Formatter<T>::format(builder, value.value()); return Formatter<T>::format(builder, value.value());
} }
}; };
#undef INITIALIZED_64
#undef INITIALIZED_128
#undef INITIALIZED_256