diff --git a/Userland/Libraries/LibJS/Runtime/Value.cpp b/Userland/Libraries/LibJS/Runtime/Value.cpp index 7f9673862e..2f61d02b91 100644 --- a/Userland/Libraries/LibJS/Runtime/Value.cpp +++ b/Userland/Libraries/LibJS/Runtime/Value.cpp @@ -870,23 +870,35 @@ ThrowCompletionOr Value::to_property_key(VM& vm) const return MUST(key.to_string(vm)); } +// 7.1.6 ToInt32 ( argument ), https://tc39.es/ecma262/#sec-toint32 ThrowCompletionOr Value::to_i32_slow_case(VM& vm) const { VERIFY(!is_int32()); - double value = TRY(to_number(vm)).as_double(); - if (!isfinite(value) || value == 0) + + // 1. Let number be ? ToNumber(argument). + double number = TRY(to_number(vm)).as_double(); + + // 2. If number is not finite or number is either +0𝔽 or -0𝔽, return +0𝔽. + if (!isfinite(number) || number == 0) return 0; - auto abs = fabs(value); + + // 3. Let int be the mathematical value whose sign is the sign of number and whose magnitude is floor(abs(ℝ(number))). + auto abs = fabs(number); auto int_val = floor(abs); - if (signbit(value)) + if (signbit(number)) int_val = -int_val; + + // 4. Let int32bit be int modulo 2^32. auto remainder = fmod(int_val, 4294967296.0); auto int32bit = remainder >= 0.0 ? remainder : remainder + 4294967296.0; // The notation “x modulo y” computes a value k of the same sign as y + + // 5. If int32bit ≥ 2^31, return 𝔽(int32bit - 2^32); otherwise return 𝔽(int32bit). if (int32bit >= 2147483648.0) int32bit -= 4294967296.0; return static_cast(int32bit); } +// 7.1.6 ToInt32 ( argument ), https://tc39.es/ecma262/#sec-toint32 ThrowCompletionOr Value::to_i32(VM& vm) const { if (is_int32())