Such operation is almost equivalent to writing on an Inode, so lock the
Inode m_inode_lock exclusively.
All FileSystem Inode implementations then override a new method called
truncate_locked which should implement the actual truncating.
SysFS, ProcFS and DevPtsFS were all sending filetype 0 when traversing
their directories, but it is actually very easy to send proper filetypes
in these filesystems.
This patch binds all RAM backed filesystems to use only one enum for
their internal filetype, to simplify the implementation and allow
sharing of code.
Please note that the Plan9FS case is currently not solved as I am not
familiar with this filesystem and its constructs.
The ProcFS mostly keeps track of the filetype, and a fix was needed for
the /proc root directory - all processes exhibit a directory inside it
which makes it very easy to hardcode the directory filetype for them.
There's also the `self` symlink inode which is now exposed as DT_LNK.
As for SysFS, we could leverage the fact everything inherits from the
SysFSComponent class, so we could have a virtual const method to return
the proper filetype.
Most of the files in SysFS are "regular" files though, so the base class
has a non-pure virtual method.
Lastly, the DevPtsFS simply hardcodes '.' and '..' as directory file
type, and everything else is hardcoded to send the character device file
type, as this filesystem is only exposing character pts device files.
In a bunch of cases, this actually ends up simplifying the code as
to_number will handle something such as:
```
Optional<I> opt;
if constexpr (IsSigned<I>)
opt = view.to_int<I>();
else
opt = view.to_uint<I>();
```
For us.
The main goal here however is to have a single generic number conversion
API between all of the String classes.
We should consider whether the selected Thread is within the same jail
or not.
Therefore let's make it clear to callers with jail semantics if a called
method checks if the desired Thread object is within the same jail.
As for Thread::for_each_* methods, currently nothing in the kernel
codebase needs iteration with consideration for jails, so the old
Thread::for_each* were simply renamed to include "ignoring_jails" suffix
in their names.
This is a preparation before we can create a usable mechanism to use
filesystem-specific mount flags.
To keep some compatibility with userland code, LibC and LibCore mount
functions are kept being usable, but now instead of doing an "atomic"
syscall, they do multiple syscalls to perform the complete procedure of
mounting a filesystem.
The FileBackedFileSystem IntrusiveList in the VFS code is now changed to
be protected by a Mutex, because when we mount a new filesystem, we need
to check if a filesystem is already created for a given source_fd so we
do a scan for that OpenFileDescription in that list. If we fail to find
an already-created filesystem we create a new one and register it in the
list if we successfully mounted it. We use a Mutex because we might need
to initiate disk access during the filesystem creation, which will take
other mutexes in other parts of the kernel, therefore making it not
possible to take a spinlock while doing this.
This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow,
UserOrKernelBuffer and ScopedCritical classes being moved to the
Kernel/Library subdirectory.
Also, move the panic and assertions handling code to that directory.
This is not needed, because when we are doing this traversing, functions
that are called from this function are using proper and more "atomic"
locking.
"Wherever applicable" = most places, actually :^), especially for
networking and filesystem timestamps.
This includes changes to unzip, which uses DOSPackedTime, since that is
changed for the FAT file systems.
That's what this class really is; in fact that's what the first line of
the comment says it is.
This commit does not rename the main files, since those will contain
other time-related classes in a little bit.
The only persistent one of these was Thread::m_process and that never
changes after initialization. Make it const to enforce this and switch
everything over to RefPtr & NonnullRefPtr.
There was only one permanent storage location for these: as a member
in the Mount class.
That member is never modified after Mount initialization, so we don't
need to worry about races there.
This patch switches away from {Nonnull,}LockRefPtr to the non-locking
smart pointers throughout the kernel.
I've looked at the handful of places where these were being persisted
and I don't see any race situations.
Note that the process file descriptor table (Process::m_fds) was already
guarded via MutexProtected.
Since the ProcFS doesn't hold many global objects within it, the need
for a fully-structured design of backing components and a registry like
with the SysFS is no longer true.
To acommodate this, let's remove all backing store and components of the
ProcFS, so now it resembles what we had in the early days of ProcFS in
the project - a mostly-static filesystem, with very small amount of
kmalloc allocations needed.
We still use the inode index mechanism to understand the role of each
inode, but this is done in a much "static"ier way than before.
This is done by merging all scattered pieces of derived classes from the
ProcFSInode class into that one class, so we don't use inheritance but
rather simplistic checks to determine the proper code for each ProcFS
inode with its specific characteristics.
Because the ".." entry in a directory is a separate inode, if a
directory is renamed to a new location, then we should update this entry
the point to the new parent directory as well.
Co-authored-by: Liav A <liavalb@gmail.com>