This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
The Kernel/API directory in general shouldn't include userspace code,
but structure definitions that both are shared between the Kernel and
userspace.
All users of the ioctl API obviously use LibC so LibC is the most common
and shared library for the affected programs.
The Kernel/API directory in general shouldn't include userspace code,
but structure definitions that both are shared between the Kernel and
userspace.
LibC is the most appropriate place for these methods as they're already
included in the sys/sysmacros.h file to create a set of convenient
macros for these methods.
These syscalls are not necessary on their own, and they give the false
impression that a caller could set or get the thread name of any process
in the system, which is not true.
Therefore, move the functionality of these syscalls to be options in the
prctl syscall, which makes it abundantly clear that these operations
could only occur from a running thread in a process that sees other
threads in that process only.
This is a prerequisite for upstreaming our LLVM patches, as our current
hack forcing `-ftls-model=initial-exec` in the Clang driver is not
acceptable upstream.
Currently, our kernel-managed TLS implementation limits us to only
having a single block of storage for all thread-local variables that's
initialized at load time. This PR merely implements the dynamic TLS
interface (`__tls_get_addr` and TLSDESC) on top of our static TLS
infrastructure. The current model's limitations still stand:
- a single static TLS block is reserved at load time, `dlopen()`-ing
shared libraries that define thread-local variables might cause us to
run out of space.
- the initial TLS image is not changeable post-load, so `dlopen()`-ing
libraries with non-zero-initialized TLS variables is not supported.
The way we repurpose `ti_module` to mean "offset within static TLS
block" instead of "module index" is not ABI-compliant.
Now that support for 32-bit x86 has been removed, we don't have to worry
about the top half of `off_t`/`u64` values being chopped off when we try
to pass them in registers. Therefore, we no longer need the workaround
of pointers to stack-allocated values to syscalls.
Note that this changes the system call ABI, so statically linked
programs will have to be re-linked.
Otherwise, if an application defines its own macros, the implementations
get messed up. This way we redefine those macros if they're set.
This fixes the PHP port build.
Isn't
"expected struct timeval *, but argument is of type struct timeval *"
a fun error message? C considers a 'struct foo' mentioned inside a
function argument to be a distinct type from 'struct foo' declared on
the global level, but only if the in-function definition comes first. So
we need to ensure that struct timeval is declared (either fully, or
forward-declared) before we declare select() and pselect(). This was
taken care of by including <sys/time.h>, but
https://github.com/SerenityOS/serenity/pull/20044 made it so that
<sys/time.h> itself includes <sys/select.h>. So if the user's program
includes <sys/time.h> (before possibly including <sys/select.h>), then
<sys/select.h>'s include of <sys/time.h> will turn into a no-op (since
<sys/time.h> is already being included), yet there will not have been a
struct timeval definition yet, and we'd get the fun error message.
Fix this by including <Kernel/API/POSIX/sys/time.h> instead of
<sys/time.h>
This allows us to get rid of an include to LibC/sys/ttydefaults.h in the
Kernel TTY implementation.
Also, move ttydefchars static const struct to another file called
Kernel/API/ttydefaultschars.h, so it could be used too in the Kernel TTY
implementation without the need to include anything from LibC.
This is necessary to support the wayland protocol.
I also moved the CMSG_* macros to the kernel API since they are used in
both kernel and userspace.
this does not break ntpquery/SCM_TIMESTAMP.
This header has always been fundamentally a Kernel API file. Move it
where it belongs. Include it directly in Kernel files, and make
Userland applications include it via sys/ioctl.h rather than directly.
Even though this almost certainly wouldn't run properly even if we had
a working kernel for AARCH64 this at least lets us build all the
userland binaries.
Serenity does not support extended attributes (xattr) and the only port
that needed those were the GLib port. The GLib port has now been updated
to compiled without xattr support.
This value will be used later on by WindowServer to reject resolutions
that will request a mapping that will overflow the hardware framebuffer
max length.
We simply don't need that field anymore, as it was used when one
FramebufferDevice could contain multiple framebuffers within it, each
for a connected screen head.
Some header files use __BEGIN_DECLS without including sys/cdefs.h.
This causes issues for C code that compiles against these headers,
which may occur with Ports.
Now that the infrastructure of the Graphics subsystem is quite stable,
it is time to try to fix a long-standing problem, which is the lack of
locking on display connector devices. Reading and writing from multiple
processes to a framebuffer controlled by the display connector is not a
huge problem - it could be solved with POSIX locking.
The real problem is some program that will try to do ioctl operations on
a display connector without the WindowServer being aware of that which
can lead to very bad situations, for example - assuming a framebuffer is
encoded at a known resolution and certain display timings, but another
process changed the ModeSetting of the display connector, leading to
inconsistency on the properties of the current ModeSetting.
To solve this, there's a new "master" ioctl to take "ownership" and
another one to release that ownership of a display connector device. To
ensure we will not hold a Process object forever just because it has an
ownership over a display connector, we hold it with a weak reference,
and if the process is gone, someone else can take an ownership.
We are able to read the EDID from SysFS, therefore there's no need to
provide this ioctl on a DisplayConnector anymore.
Also, now we can simply require the video pledge to be set before doing
any ioctl on a DisplayConnector.
* Always return 0 if `WNOHANG` is specified and no waitable child is
found, even if `wstatus` is null.
* Do not return 0 if the child is continued. Treat it the same way as
all the other states.
Refer to the RETURN VALUE section of the POSIX spec:
https://pubs.opengroup.org/onlinepubs/9699919799/functions/wait.html
Implement futimes() in terms of utimensat(). Now, utimensat() strays
from POSIX compliance because it also accepts a combination of a file
descriptor of a regular file and an empty path. utimensat() then uses
this file descriptor instead of the path to update the last access
and/or modification time of a file. That being said, its prior behavior
remains intact.
With the new behavior of utimensat(), `path` must point to a valid
string; given a null pointer instead of an empty string, utimensat()
sets `errno` to `EFAULT` and returns a failure.
The DisplayConnector class is meant to replace the FramebufferDevice
class. The advantage of this class over the FramebufferDevice class is:
1. It removes the mmap interface entirely. This interface is unsafe, as
multiple processes could try to use it, and when switching to and from
text console mode, there's no "good" way to revoke a memory mapping from
this interface, let alone when there are multiple processes that call
this interface. Therefore, in the DisplayConnector class there's no
implementation for this method at all.
2. The class uses a new real-world structure called ModeSetting, which
takes into account the fact that real hardware requires more than width,
height and pitch settings to mode-set the display resolution.
3. The class assumes all instances should supply some sort of EDID,
so it facilitates such mechanism to do so. Even if a given driver does
not know what is the actual EDID, it will ask to create default-generic
EDID blob.
3. This class shifts the responsibilies of switching between console
mode and graphical mode from a GraphicsAdapter to the DisplayConnector
class, so when doing the switch, the GraphicsManagement code actually
asks each DisplayConnector object to do the switch and doesn't rely on
the GraphicsAdapter objects at all.