Update to the latest version of the spec which was refactored to use
time zone methods record. This requires updating a whole bunch of
callers to pass through a record too.
This also ends up improving exceptions on a missing
getOffsetNanosecondsFor method.
This patch adds two macros to declare per-type allocators:
- JS_DECLARE_ALLOCATOR(TypeName)
- JS_DEFINE_ALLOCATOR(TypeName)
When used, they add a type-specific CellAllocator that the Heap will
delegate allocation requests to.
The result of this is that GC objects of the same type always end up
within the same HeapBlock, drastically reducing the ability to perform
type confusion attacks.
It also improves HeapBlock utilization, since each block now has cells
sized exactly to the type used within that block. (Previously we only
had a handful of block sizes available, and most GC allocations ended
up with a large amount of slack in their tails.)
There is a small performance hit from this, but I'm sure we can make
up for it elsewhere.
Note that the old size-based allocators still exist, and we fall back
to them for any type that doesn't have its own CellAllocator.
Rather than splitting the Iterator type and its AOs into two files,
let's combine them into one file to match every other JS runtime object
that we have.
This is a normative change in the ECMA-402 spec. See:
50eb413
Note that this canonicalization already occurred. As the above commit
alludes to, we parse the rearguard format of the TZDB, so GMT is already
an alias to Etc/GMT. But it doesn't hurt to be explicit here.
This constructor was easily confused with a copy constructor, and it was
possible to accidentally copy-construct Objects in at least one way that
we dicovered (via generic ThrowCompletionOr construction).
This patch adds a mandatory ConstructWithPrototypeTag parameter to the
constructor to disambiguate it.
Three standalone Cell creation functions remain in the JS namespace:
- js_bigint()
- js_string()
- js_symbol()
All of them are leftovers from early iterations when LibJS still took
inspiration from JSC, which itself has jsString(). Nowadays, we pretty
much exclusively use static create() functions to construct types
allocated on the JS heap, and there's no reason to not do the same for
these.
Also change the return type from BigInt* to NonnullGCPtr<BigInt> while
we're here.
This is patch 1/3, replacement of js_string() and js_symbol() follow.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
This is an editorial change in the Temporal spec.
See: d83dcf0
Note that even though we already implement AvailableTimeZones for Intl,
I kept the existing implementation calling into LibTimeZone directly.
This is an editorial change in the Temporal spec. See:
1b051cc
Note that since Date's implementation of this AO uses Crypto bigints
rather than allocating JS bigints, this change has the fallout of
removing some unused VM parameters and adding an overload of the
IsValidEpochNanoseconds AO for use without a JS::BigInt.
Intrinsics, i.e. mostly constructor and prototype objects, but also
things like empty and new object shape now live on a new heap-allocated
JS::Intrinsics object, thus completing the long journey of taking all
the magic away from the global object.
This represents the Realm's [[Intrinsics]] slot in the spec and matches
its existing [[GlobalObject]] / [[GlobalEnv]] slots in terms of
architecture.
In the majority of cases it should now be possibly to fully allocate a
regular object without the global object existing, and in fact that's
what we do now - the realm is allocated before the global object, and
the intrinsics between both :^)
Instead we just use a specific constructor. With this set of
constructors using curly braces for constructing is highly recommended.
As then it will not do too many implicit conversions which could lead to
unexpected loss of data or calling the much slower double constructor.
Also to ensure we don't feed (Un)SignedBigInteger infinities we throw
RangeError earlier for Durations.
- Prefer VM::current_realm() over GlobalObject::associated_realm()
- Prefer VM::heap() over GlobalObject::heap()
- Prefer Cell::vm() over Cell::global_object()
- Prefer Wrapper::vm() over Wrapper::global_object()
- Inline Realm::global_object() calls used to access intrinsics as they
will later perform a direct lookup without going through the global
object
This is a continuation of the previous five commits.
A first big step into the direction of no longer having to pass a realm
(or currently, a global object) trough layers upon layers of AOs!
Unlike the create() APIs we can safely assume that this is only ever
called when a running execution context and therefore current realm
exists. If not, you can always manually allocate the Error and put it in
a Completion :^)
In the spec, throw exceptions implicitly use the current realm's
intrinsics as well: https://tc39.es/ecma262/#sec-throw-an-exception