This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
The roll-up feature allows the user to set the window content to be
hidden, while retaining the window title bar visibility.
While in roll-up mode, the window height size is not changeable.
However, tiling the window or maximizing (as well as unmaximize) it will
instruct exiting the roll-up mode.
You can now add applications to Quick Launch via the context
menu option of their windows. Clicking it creates an event with the
stored PID of the process that created the window. The Taskbar receives
the event and tells the QuickLaunchWidget to add the PID, which then
gets the executable using /sys/kernel/processes. It also looks for an
AppFile using the name from the process object and if there is one, it
uses that, since it should contain a better formatted name.
The "Window" classes in LibGUI and WindowServer now store the PID of the
process that created the window. LibGUI's Window obtains the PID in the
constructor via getpid(), and passes it in Window::show() to
WindowServer via the create_window() IPC route. WindowServer then saves
it in its own Window class.
This allows us to find the process that created a window in order to add
process-specific actions to the window.
From what I can tell, this facility was added to WSWindow/GWindow in
2019 in 9b71307. I only found a single place in the codebase still using
this facility: `WindowServer::Menu::start_activation_animation()`. A
subtle fade-out animation that happens when a menu item is selected, and
the menu disappears.
I think our compositing facilities have improved enough to make this
facility redundant. The remaining use mentioned above was ported to just
directly blit the fade-out animation instead of requesting it from
WindowServer.
The old `GUI::Window` resizing behavior created a new backing store for
each resize event (i.e. every visible window size). This caused a lot of
trashing and on my machine, caused up to 25% of CPU time spent in
creating new backing stores.
The new behavior is a bit more sensible:
* If the window size is shrinking, the backing store is already large
enough to contain the entire window - so we don't create a new one.
* If the window size is growing, as soon as the backing store can no
longer contain the window, it is inflated with a large margin (of an
arbitrary chosen 64 pixels) in both directions to accommodate some
leeway in resizing before an even larger backing store is required.
* When the user stops resizing the window, the backing store is
resized to the exact dimensions of the window.
For me, this brings the CPU time for creating backing stores down to 0%.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
and the CaptureInput mode. They are a source of unneeded complexity
in WindowServer and have proven prone to regressions, so this patch
replaces them with a simple input preemption scheme using Popups.
Popup windows now have ergonomics similar to menus: When open,
a popup preempts all mouse and key events for the entire window
stack; however, they are fragile and will close after WindowServer
swallows the first event outside them. This is similar to how combo
box windows and popups work in the classic Windows DE and has the
added benefit of letting the user click anywhere to dismiss a popup
without having to worry about unwanted interactions with other
widgets.
with the CaptureInput WindowMode. This mode will serve the same
function as accessories: redirecting input while allowing parent
windows to remain active.
with the RenderAbove WindowMode. This mode will ensure child
windows always draw above their parents, even when focus is lost.
RenderAbove modals are automatically themed the same as the old
ToolWindows. Fixes ToolWindows rendering above ALL normal windows,
regardless of parent. We can't rely on WindowType to create these
sort of effects because of WindowManager's strict display hierarchy.
Previously, Windows only understood blocking modality: Windows were
either modal, i.e., in a blocking state, or not. Windows could also
be set as Accessories or ToolWindows, attributes which technically
applied modes to their parents but were implemented ad hoc. This patch
redefines these modal effects as WindowModes and sets up some helpers.
This will let us simplify a lot of modal logic in the upcoming patches
and make it easier to build new modal effects in the future.
Windows can now set 1 of 5 modes before reification:
-Modeless: No modal effect; begins a new modal chain
-Passive: Window joins its modal chain but has no effect
-RenderAbove: Window renders above its parent
-CaptureInput: Window captures the active input role from its parent
-Blocking: Window blocks all interaction with its modal chain
States like fullscreen and tiling are dynamic and don't alter behavior
in modal chains, so they aren't included.
Superceded by to_floating_cursor_position() as a more accurate way
to reposition windows on untile. Effectively made set_size_around()
dead code, so the remnants can be removed.
Positioning windows outside visible coordinates is valid if sometimes
curious behavior, but it shouldn't be considered misbehavior by default.
There are multiple ways to recover windows with obscured title bars,
and this function papers over actual resize bugs and is no longer
needed to normalize window size, so let's remove it for now.
And remove unnecessary workarounds to the old limit of {50, 50} and
the cautious but arbitrary limit of {1, 1} for other WindowTypes.
Null rects are already the default when calculating minimum window
size and are the least restrictive but valid value.
Also returns early during minimum size calculations for frameless
windows, and verifies against negative minimum sizes and failure to
disable widget min size before setting a minimum window size. Layout
automatically overrides this setting each relayout otherwise.
We need to set Window::m_invalidated_frame to true when invalidating
the title, otherwise we may miss re-rendering the frame if nothing
else triggers it.
Calculating tiled and miximized window frame have a lot in common. In
fact, we can look at maximized window state as a special case of the
tile type. It simplifies the code since there is a lot of cases when
we take an action only if the window is maximized or tiled.
VerticallyMaximized tiling replaces set_vertically_maximized() to
take advantage of tiling ergonomics.
Middle-clicking a window's maximize button now tiles vertically;
secondary-clicking tiles horizontally.
Adds Super+Alt+Arrow shortcuts for both. Super+Left/Right tiling
shortcuts now let windows shift between tile types directly.
Previously, different rects were used to restore tiled and maximized
windows, creating edge cases for inconsistent restoration. All states
now restore m_floating_rect, which saves the last valid size and
location of a window while free-floating.
There is also make_ref_counted(), which does not call did_construct(),
so the method was not guaranteed to be run. Since there is only a single
user, and `WindowServer::Window` is a final class anyway (so there is no
need to separate the constructor and post-constructor phases), let's get
rid of this concept.
(The following commits reduce the opportunities to call
make_ref_counted, but still.)
Currently, any number of menubars can be plugged in and out of a window.
This is unnecessary complexity, since we only need one menubar on a
window. This commit removes most of the logic for dynamically attaching
and detaching menubars and makes one menubar always available. The
menubar is only considered existent if it has at least a single menu in
it (in other words, an empty menubar will not be shown).
This commit additionally fixes a bug wherein menus added after a menubar
has been attached would not have their rects properly setup, and would
therefore appear glitched out on the top left corner of the menubar.
We were re-rendering areas that were considered transparency areas even
though they weren't transparency areas or were occluded by opaque
areas.
In order to fix this, we need to be a bit smarter about what is above
and below any given window. Even though a window may have transparent
areas, if those are occluded by opaque window areas on top they are
not actually any areas that should be rendered at all. And the opposite
also applies, opaque window areas for windows below that are occluded
by transparent areas, do need to be rendered as transparency. This
solves the problem of unnecessary transparency areas.
The other problem is that we need to know what areas of a window's
dirty rectangles affect other windows, and where. Basically any
opaque area that is somehow below a transparent area that isn't
otherwise occluded, and any transparent area above any other window
area (transparent or opaque) needs to be marked dirty prior to
composing. This makes sure that all affected windows render these
areas in the correct order. To track these, we now have a map of
affected windows and the rectangles that are affected (because not all
of that window's transparency areas may be affected).
This implements window stealing in WindowServer, which allows clients
to mark a window they own as 'stealable' by another client. Indicating
that the other client may use it for any purpose.
This also updates set_window_parent_from_id so that the client must
first mark its window as stealable before allowing other clients to
use it as a parent.
Before this change, invalidating any rect in a WindowFrame would cause
the entire window (including frame & drop shadow) to get invalidated,
leading to copious amounts of overdraw when mousing over menubars,
titlebars, and window buttons.
We now simply allow the partial frame invalidations through to the
window's dirty rects collection and the compositor takes care of it.
This patch adds the concept of a window being "Pinnable" (always drawn
on top of other windows). This can be toggled through a new checkable
action in the top left corner's window menu.
Because window states and various flags can affect the windows'
rendered areas it's safer to use the last computed occlusion rectangles
to invalidate areas on the screen that may have to be re-rendered due
to e.g. a window size change.
Fixes#6723
Differentiates between normal minimization and hidden windows. A window
which is hidden is still minimized, but can be seen as another stage
of being minimized.
Also, make it return a reference as aside from only three special
situations (creating, destroying, and moving a window between stacks)
a window should always be on a window stack. Any access during those
brief situations would be a bug, so we should VERIFY this.