This syscall ends up disabling interrupts while changing the time,
and the clock is a global resource anyway, so preventing threads in the
same process from running wouldn't solve anything.
This patch move AddressSpace (the per-process memory manager) to using
the new atomic "place" APIs in RegionTree as well, just like we did for
MemoryManager in the previous commit.
This required updating quite a few places where VM allocation and
actually committing a Region object to the AddressSpace were separated
by other code.
All you have to do now is call into AddressSpace once and it'll take
care of everything for you.
RegionTree holds an IntrusiveRedBlackTree of Region objects and vends a
set of APIs for allocating memory ranges.
It's used by AddressSpace at the moment, and will be used by MM soon.
This patch stops using VirtualRangeAllocator in AddressSpace and instead
looks for holes in the region tree when allocating VM space.
There are many benefits:
- VirtualRangeAllocator is non-intrusive and would call kmalloc/kfree
when used. This new solution is allocation-free. This was a source
of unpleasant MM/kmalloc deadlocks.
- We consolidate authority on what the address space looks like in a
single place. Previously, we had both the range allocator *and* the
region tree both being used to determine if an address was valid.
Now there is only the region tree.
- Deallocation of VM when splitting regions is no longer complicated,
as we don't need to keep two separate trees in sync.
8233da3398 introduced a not-so-subtle bug
where an application with an existing pledge set containing `no_error`
could elevate its pledge set by pledging _anything_, this commit makes
sure that no new promise is accepted.
This makes pledge() ignore promises that would otherwise cause it to
fail with EPERM, which is very useful for allowing programs to run under
a "jail" so to speak, without having them termiate early due to a
failing pledge() call.
The obsolete ttyname and ptsname syscalls are removed.
LibC doesn't rely on these anymore, and it helps simplifying the Kernel
in many places, so it's an overall an improvement.
In addition to that, /proc/PID/tty node is removed too as it is not
needed anymore by userspace to get the attached TTY of a process, as
/dev/tty (which is already a character device) represents that as well.
The stack is misaligned at this point for some reason, this is a hack
that makes the resulting object "correctly" aligned, thus avoiding a
KUBSAN error.
Mere mortals like myself cannot understand more than two lines of
assembly without a million comments explaining what's happening, so do
that and make sure no one has to go on a wild stack state chase when
hacking on these.
POSIX requires that sigaction() and friends set a _process-wide_ signal
handler, so move signal handlers and flags inside Process.
This also fixes a "pid/tid confusion" FIXME, as we can now send the
signal to the process and let that decide which thread should get the
signal (which is the thread with tid==pid, but that's now the Process's
problem).
Note that each thread still retains its signal mask, as that is local to
each thread.