IDEChannel which is an ATAPort derived class holded a NonnullRefPtr to a
parent IDEController, although we can easily defer the usage of it to
not be in the IDEChannel code at all, so it allows to keep NonnullRefPtr
to the parent ATAController in the ATAPort base class and only there.
This abstraction layer is mainly for ATA ports (AHCI ports, IDE ports).
The goal is to create a convenient and flexible framework so it's
possible to expand to support other types of controller (e.g. Intel PIIX
and ICH IDE controllers) and to abstract operations that are possible on
each component.
Currently only the ATA IDE code is affected by this, making it much
cleaner and readable - the ATA bus mastering code is moved to the
ATAPort code so more implementations in the near future can take
advantage of such functionality easily.
In addition to that, the hierarchy of the ATA IDE code resembles more of
the SATA AHCI code now, which means the IDEChannel class is solely
responsible for getting interrupts, passing them for further processing
in the ATAPort code to take care of the rest of the handling logic.
We do that to increase clarity of the major and secondary components in
the subsystem. To ensure it's even more understandable, we rename the
files to better represent the class within them and to remove redundancy
in the name.
Also, some includes are removed from the general components of the ATA
components' classes.
LUN address is essentially how people used to address SCSI devices back
in the day we had these devices more in use. However, SCSI was taken as
an abstraction layer for many Unix and Unix-like systems, so it still
common to see LUN addresses in use. In Serenity, we don't really provide
such abstraction layer, and therefore until now, we didn't use LUNs too.
However (again), this changes, as we want to let users to address their
devices under SysFS easily. LUNs make sense in that regard, because they
can be easily adapted to different interfaces besides SCSI.
For example, for legacy ATA hard drive being connected to the first IDE
controller which was enumerated on the PCI bus, and then to the primary
channel as slave device, the LUN address would be 0:0:1.
To make this happen, we add unique ID number to each StorageController,
which increments by 1 for each new instance of StorageController. Then,
we adapt the ATA and NVMe devices to use these numbers and generate LUN
in the construction time.
This bug was probably around for a very long time, but it is noticeable
only under VirtualBox as it generated an non fatal error which caused a
kernel panic because we VERIFYed the wrong lock to be locked.
There's no real value in separating physical pages to supervisor and
user types, so let's remove the concept and just let everyone to use
"user" physical pages which can be allocated from any PhysicalRegion
we want to use. Later on, we will remove the "user" prefix as this
prefix is not needed anymore.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
The initialize_hba method now calls the reset method to reset the HBA
and initialize each AHCIPort. Also, after full HBA reset we need to turn
on the AHCI functionality of the HBA and global interrupts since they
are cleared to 0 according to the specification in the GHC register.
Instead of doing this in a parent class like the AHCIController, let's
do that directly in the AHCIPort class as that class is the only user of
these sort of physical pages. While it seems like we waste an entire 4KB
of physical RAM for each allocation, this could serve us later on if we
want to fetch other types of logs from the ATA device.
The way AHCIPortHandler held AHCIPorts and even provided them with
physical pages for the ATA identify buffer just felt wrong.
To fix this, AHCIPortHandler is not a ref-counted object anymore. This
solves the big part of the problem, because AHCIPorts can't hold a
reference to this object anymore, only the AHCIController can do that.
Then, most of the responsibilities are shifted to the AHCIController,
making the AHCIPortHandler a handler of port interrupts only.
The AHCI code is not very good at OOM conditions, so this is a first
step towards OOM correctness. We should not allocate things inside C++
constructors because we can't catch OOM failures, so most allocation
code inside constructors is exported to a different function.
Also, don't use a HashMap for holding RefPtr of AHCIPort objects in
AHCIPortHandler because this structure is not very OOM-friendly. Instead
use a fixed Array of 32 RefPtrs, as at most we can have 32 AHCI ports
per AHCI controller.
In most cases it's safe to abort the requested operation and go forward,
however, in some places it's not clear yet how to handle these failures,
therefore, we use the MUST() wrapper to force a kernel panic for now.
The underlying driver does not need to recalculate the buffer size as
it is passed in the AsyncBlockDevice struct anyway. This also helps in
removing any assumptions of the underlying block size of the device.
This class already has variables named m_lock, and it's also strange
that locals are named with the `m_` prefix. So lets fix that to make
the code more readable.
Found by PVS-Studio.
If there's no PCI bus, then it's safe to assume that we run on a x86
machine that has an ISA IDE controller in the system. In such case, we
just instantiate a ISAIDEController object that assumes fixed locations
of IDE IO ports.
Before attempting to remove the device while handling an AHCI port
interrupt, check if m_connected_device is even non-null.
This happened during my bare metal run and caused a kernel panic.
Apologies for the enormous commit, but I don't see a way to split this
up nicely. In the vast majority of cases it's a simple change. A few
extra places can use TRY instead of manual error checking though. :^)
This mostly just moved the problem, as a lot of the callers are not
capable of propagating the errors themselves, but it's a step in the
right direction.
This will allow File and it's descendants to use RefCounted instead of
having a custom implementation of unref. (Since RefCounted calls
will_be_destroyed automatically)
This commit also removes an erroneous call to `before_removing` in
AHCIPort, this is a duplicate call, as the only reference to the device
is immediately dropped following the call, which in turns calls
`before_removing` via File::unref.
This was a premature optimization from the early days of SerenityOS.
The eternal heap was a simple bump pointer allocator over a static
byte array. My original idea was to avoid heap fragmentation and improve
data locality, but both ideas were rooted in cargo culting, not data.
We would reserve 4 MiB at boot and only ended up using ~256 KiB, wasting
the rest.
This patch replaces all kmalloc_eternal() usage by regular kmalloc().
In order to reduce our reliance on __builtin_{ffs, clz, ctz, popcount},
this commit removes all calls to these functions and replaces them with
the equivalent functions in AK/BuiltinWrappers.h.
Instead of repeating ourselves with the pattern of waiting for some
condition to be met, we can have a general method for this task,
and then we can provide the retry count, the required delay and a lambda
function for the checked condition.
Don't use interrupts when trying to reset a device that is connected to
a port on the AHCI controller, and instead poll for changes in status to
break out from the loop. At the worst case scenario we can wait 0.01
seconds for each SATA reset.
Don't use interrupts when trying to identify a device that is connected
to a port on the AHCI controller, and instead poll for changes in status
to end the transaction.
Not only this simplifies the initialization sequence, it ensures that
for whatever reason the controller doesn't send an IRQ, we are never
getting stuck at this point.
Like what happened with the PCI and USB code, this feels like the right
thing to do because we can improve on the ATA capabilities and keep it
distinguished from the rest of the subsystem.