This value will be used later on by WindowServer to reject resolutions
that will request a mapping that will overflow the hardware framebuffer
max length.
We simply don't need that field anymore, as it was used when one
FramebufferDevice could contain multiple framebuffers within it, each
for a connected screen head.
Now that the infrastructure of the Graphics subsystem is quite stable,
it is time to try to fix a long-standing problem, which is the lack of
locking on display connector devices. Reading and writing from multiple
processes to a framebuffer controlled by the display connector is not a
huge problem - it could be solved with POSIX locking.
The real problem is some program that will try to do ioctl operations on
a display connector without the WindowServer being aware of that which
can lead to very bad situations, for example - assuming a framebuffer is
encoded at a known resolution and certain display timings, but another
process changed the ModeSetting of the display connector, leading to
inconsistency on the properties of the current ModeSetting.
To solve this, there's a new "master" ioctl to take "ownership" and
another one to release that ownership of a display connector device. To
ensure we will not hold a Process object forever just because it has an
ownership over a display connector, we hold it with a weak reference,
and if the process is gone, someone else can take an ownership.
We are able to read the EDID from SysFS, therefore there's no need to
provide this ioctl on a DisplayConnector anymore.
Also, now we can simply require the video pledge to be set before doing
any ioctl on a DisplayConnector.
The DisplayConnector class is meant to replace the FramebufferDevice
class. The advantage of this class over the FramebufferDevice class is:
1. It removes the mmap interface entirely. This interface is unsafe, as
multiple processes could try to use it, and when switching to and from
text console mode, there's no "good" way to revoke a memory mapping from
this interface, let alone when there are multiple processes that call
this interface. Therefore, in the DisplayConnector class there's no
implementation for this method at all.
2. The class uses a new real-world structure called ModeSetting, which
takes into account the fact that real hardware requires more than width,
height and pitch settings to mode-set the display resolution.
3. The class assumes all instances should supply some sort of EDID,
so it facilitates such mechanism to do so. Even if a given driver does
not know what is the actual EDID, it will ask to create default-generic
EDID blob.
3. This class shifts the responsibilies of switching between console
mode and graphical mode from a GraphicsAdapter to the DisplayConnector
class, so when doing the switch, the GraphicsManagement code actually
asks each DisplayConnector object to do the switch and doesn't rely on
the GraphicsAdapter objects at all.
This ioctl operation will allow userspace to determine the index number
of a MasterPTY after opening /dev/ptmx and actually getting an internal
file descriptor of MasterPTY.
This is not actually implemented at the moment, as we do not support
sending or receiving out-of-band data at all currently, but it is
required for some ports to compile.
We create a base class called GenericFramebufferDevice, which defines
all the virtual functions that must be implemented by a
FramebufferDevice. Then, we make the VirtIO FramebufferDevice and other
FramebufferDevice implementations inherit from it.
The most important consequence of rearranging the classes is that we now
have one IOCTL method, so all drivers should be committed to not
override the IOCTL method or make their own IOCTLs of FramebufferDevice.
All graphical IOCTLs are known to all FramebufferDevices, and it's up to
the specific implementation whether to support them or discard them (so
we require extensive usage of KResult and KResultOr, together with
virtual characteristic functions).
As a result, the interface is much cleaner and understandable to read.
Two new ioctl requests are used to get and set the sample rate of the
sound card. The SB16 device keeps track of the sample rate separately,
because I don't want to figure out how to read the sample rate from the
device; it's easier that way.
The soundcard write doesn't set the sample rate to 44100 Hz every time
anymore, as we want to change it externally.
GCC and Clang allow us to inject a call to a function named
__sanitizer_cov_trace_pc on every edge. This function has to be defined
by us. By noting down the caller in that function we can trace the code
we have encountered during execution. Such information is used by
coverage guided fuzzers like AFL and LibFuzzer to determine if a new
input resulted in a new code path. This makes fuzzing much more
effective.
Additionally this adds a basic KCOV implementation. KCOV is an API that
allows user space to request the kernel to start collecting coverage
information for a given user space thread. Furthermore KCOV then exposes
the collected program counters to user space via a BlockDevice which can
be mmaped from user space.
This work is required to add effective support for fuzzing SerenityOS to
the Syzkaller syscall fuzzer. :^) :^)
Depending on the driver, the second buffer may not be located right
after the first, e.g. it may be page aligned. This removes this
assumption and queries the driver for the appropriate offset.
Some devices may require DMA transfers to flush the updated buffer
areas prior to flipping. For those devices we track the areas that
require flushing prior to the next flip. For devices that do not
support flipping, but require flushing, we'll simply flush after
updating the front buffer.
This also adds a small optimization that skips these steps entirely for
a screen that doesn't have any updates that need to be rendered.
We regularily need to flush many rectangles, so instead of making many
expensive ioctl() calls to the framebuffer driver, collect the
rectangles and only make one call. And if we have too many rectangles
then it may be cheaper to just update the entire region, in which case
we simply convert them all into a union and just flush that one
rectangle instead.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
This patch adds a few missing ioctls which were required by Wine.
SIOCGIFNETMASK, SIOCGIFBRDADDR and SIOCGIFMTU are fully implemented,
while SIOCGIFFLAGS and SIOCGIFCONF are stubs.
Added a dummy TIOCSTI ioctl placeholder. This is a dangerous ioctl that
can be used to inject input into a tty. Added for compatibility. Always
fails with EIO.