Using a Vector<Value> is unsafe as GC cannot see the stored values.
This is then vended to outside users of ConsoleClient, e.g. LibWeb and
WebContent, which is then outside of LibJS's control.
An example issue is if the client stores it for later use and forgets
to visit the stored values, meaning they can be destroyed at any time.
We can save the client from this by vending a MarkedVector<Value> to
them.
There was an awful lot of JS::Value <-> double conversion going on, even
through these AOs only work with number values anyway.
They don't need a global object either as they won't allocate or throw,
that was simply to pass it to infallible calls of ToIntegerOrInfinity.
In many cases we already know a certain value is a number, or don't have
JS values at all and would need to wrap doubles in a value. To optimize
these cases and avoid having to pass a global object into functions that
won't ever allocate or throw, add a standalone implementation of this
function that takes and returns doubles directly.
Since the layout_box of a SVGGraphicsPaintable is already casted to the
right type, the underlying dom_node was also always of the right type.
This triggers a warning on Lagom builds.
This was changed a while ago so the generated files are placed in the
Build directory. Let's remove the gitignore file so any old version of
the files stop conflicting with the new generated versions.
The change in 3ec0183 wasn't actually correct, the spec tells us to set
the "prototype" property of the function (created with a prototype of
%GeneratorFunction.prototype% itself) to a newly created object:
OrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%)
Clang didn't accept the friend declaration here, as the class has a
requires clause attached to it, and I couldn't immediately figure
out what it wants instead.
Add accessors for VectorN::m_data and use those where needed instead
for now.
The DisplayConnector class is meant to replace the FramebufferDevice
class. The advantage of this class over the FramebufferDevice class is:
1. It removes the mmap interface entirely. This interface is unsafe, as
multiple processes could try to use it, and when switching to and from
text console mode, there's no "good" way to revoke a memory mapping from
this interface, let alone when there are multiple processes that call
this interface. Therefore, in the DisplayConnector class there's no
implementation for this method at all.
2. The class uses a new real-world structure called ModeSetting, which
takes into account the fact that real hardware requires more than width,
height and pitch settings to mode-set the display resolution.
3. The class assumes all instances should supply some sort of EDID,
so it facilitates such mechanism to do so. Even if a given driver does
not know what is the actual EDID, it will ask to create default-generic
EDID blob.
3. This class shifts the responsibilies of switching between console
mode and graphical mode from a GraphicsAdapter to the DisplayConnector
class, so when doing the switch, the GraphicsManagement code actually
asks each DisplayConnector object to do the switch and doesn't rely on
the GraphicsAdapter objects at all.
Our move to floating point precision has eradicated the pixel artifacts
in Quake 1, but introduced new and not so subtle rendering glitches in
games like Tux Racer. This commit changes three things to get the best
of both worlds:
1. Subpixel logic based on `i32` types was reintroduced, the number of
bits is set to 6. This reintroduces the artifacts in Quake 1 but
fixes rendering of Tux Racer.
2. Before triangle culling, subpixel coordinates are calculated and
stored in `Triangle`. These coordinates are rounded, which fixes the
Quake 1 artifacts. Tux Racer is unaffected.
3. The triangle area (actually parallelogram area) is also stored in
`Triangle` so we don't need to recalculate it later on. In our
previous subpixel code, there was a subtle disconnect between the
two calculations (one with and one without subpixel precision) which
resulted in triangles incorrectly being culled. This fixes some
remaining Quake 1 artifacts.
We were splitting these API wrappers up into different files without a
quantifiable benefit. Now, it's extremely clear where the direct API
implementation lives. :^)
The file is now renamed to Queue.h, and the Resampler APIs with
LegacyBuffer are also removed. These changes look large because nobody
actually needs Buffer.h (or Queue.h). It was mostly transitive
dependencies on the massive list of includes in that header, which are
now almost all gone. Instead, we include common things like Sample.h
directly, which should give faster compile times as very few files
actually need Queue.h.
This completely removes WavLoader's dependency on LegacyBuffer: We
directly create the result sample container and write into it. I took
this opportunity to rewrite most of the sample reading functions as a
single templated function, which combined with the better error handling
makes this "ported" code super concise.
This makes the code much more readable and concise, reduces the size of
the WavLoader class itself, moves almost all fallible initialization out
of the constructor and should provide better error handling in general.
Also, a lot of now-unnecessary imports are removed.
* All clang-tidy warnings fixed except read_header cognitive complexity
* Use size_t in more places
* Replace #define's with constexpr constants
* Some variable renaming for readability