We initialize the MMU by first setting up the page tables for the
kernel image and the initial kernel stack.
Then we jump to a identity mapped page which makes the newly created
kernel root page table active by setting `satp` and then jumps to
`init`.
This trap handler uses the SBI to print an error message via a newly
introduced panic function, which is necessary as `pre_init` is running
identity mapped.
Also add a header file for `pre_init.cpp` as we wan't to use the panic
and `dbgln` function in the MMU init code as well.
We first try to use the newer "SRST" extension for rebooting and
shutting down and if that fails, we try to shutdown using the legacy
"System Shutdown" extension (which can't reboot, so we always shutdown).
The kernel will halt, if we return from here due to all attempts at
rebooting / shutting down failing.
The signal handling code (and possibly other code as well) expects this
struct to have an alignment of 16 bytes, as it pushes this struct on the
stack.
This commit adds all necessary includes, so all functions are properly
declared.
PCI.cpp is moved to PCI/Initializer.cpp, as that matches the header
path.
`MM.protect_kernel_image` would otherwise make the contents of these
sections read-only, as they were for some reason placed before `.data`
and after the start of `.text`.
At any one given time, there can be an abitrary number of USB drivers in
the system. The way driver mapping works (i.e, a device is inserted, and
a potentially matching driver is probed) requires us to have
instantiated driver objects _before_ a device is inserted. This leaves
us with a slight "chicken and egg" problem. We cannot call the probe
function before the driver is initialised, but we need to know _what_
driver to initialise.
This section is designed to store pointers to functions that are called
during the last stage of the early `_init` sequence in the Kernel. The
accompanying macro in `USBDriver` emits a symbol, based on the driver
name, into this table that is then automatically called.
This way, we enforce a "common" driver model; driver developers are not
only required to write their driver and inherit from `USB::Driver`, but
are also required to have a free floating init function that registers
their driver with the USB Core.